Bio.PDB.vectors module¶
Vector class, including rotation-related functions.
- Bio.PDB.vectors.m2rotaxis(m)¶
Return angles, axis pair that corresponds to rotation matrix m.
The case where
m
is the identity matrix corresponds to a singularity where any rotation axis is valid. In that case,Vector([1, 0, 0])
, is returned.
- Bio.PDB.vectors.vector_to_axis(line, point)¶
Vector to axis method.
Return the vector between a point and the closest point on a line (ie. the perpendicular projection of the point on the line).
- Parameters
line (L{Vector}) – vector defining a line
point (L{Vector}) – vector defining the point
- Bio.PDB.vectors.rotaxis2m(theta, vector)¶
Calculate left multiplying rotation matrix.
Calculate a left multiplying rotation matrix that rotates theta rad around vector.
- Parameters
theta (float) – the rotation angle
vector (L{Vector}) – the rotation axis
- Returns
The rotation matrix, a 3x3 Numeric array.
Examples
>>> from numpy import pi >>> from Bio.PDB.vectors import rotaxis2m >>> from Bio.PDB.vectors import Vector >>> m = rotaxis2m(pi, Vector(1, 0, 0)) >>> Vector(1, 2, 3).left_multiply(m) <Vector 1.00, -2.00, -3.00>
- Bio.PDB.vectors.rotaxis(theta, vector)¶
Calculate left multiplying rotation matrix.
Calculate a left multiplying rotation matrix that rotates theta rad around vector.
- Parameters
theta (float) – the rotation angle
vector (L{Vector}) – the rotation axis
- Returns
The rotation matrix, a 3x3 Numeric array.
Examples
>>> from numpy import pi >>> from Bio.PDB.vectors import rotaxis2m >>> from Bio.PDB.vectors import Vector >>> m = rotaxis2m(pi, Vector(1, 0, 0)) >>> Vector(1, 2, 3).left_multiply(m) <Vector 1.00, -2.00, -3.00>
- Bio.PDB.vectors.refmat(p, q)¶
Return a (left multiplying) matrix that mirrors p onto q.
- Returns
The mirror operation, a 3x3 Numeric array.
Examples
>>> from Bio.PDB.vectors import refmat >>> p, q = Vector(1, 2, 3), Vector(2, 3, 5) >>> mirror = refmat(p, q) >>> qq = p.left_multiply(mirror) >>> print(q) <Vector 2.00, 3.00, 5.00> >>> print(qq) <Vector 1.21, 1.82, 3.03>
- Bio.PDB.vectors.rotmat(p, q)¶
Return a (left multiplying) matrix that rotates p onto q.
- Parameters
p (L{Vector}) – moving vector
q (L{Vector}) – fixed vector
- Returns
rotation matrix that rotates p onto q
- Return type
3x3 Numeric array
Examples
>>> from Bio.PDB.vectors import rotmat >>> p, q = Vector(1, 2, 3), Vector(2, 3, 5) >>> r = rotmat(p, q) >>> print(q) <Vector 2.00, 3.00, 5.00> >>> print(p) <Vector 1.00, 2.00, 3.00> >>> p.left_multiply(r) <Vector 1.21, 1.82, 3.03>
- Bio.PDB.vectors.calc_angle(v1, v2, v3)¶
Calculate angle method.
Calculate the angle between 3 vectors representing 3 connected points.
- Parameters
v2, v3 (v1,) – the tree points that define the angle
- Returns
angle
- Return type
float
- Bio.PDB.vectors.calc_dihedral(v1, v2, v3, v4)¶
Calculate dihedral angle method.
Calculate the dihedral angle between 4 vectors representing 4 connected points. The angle is in ]-pi, pi].
- Parameters
v2, v3, v4 (v1,) – the four points that define the dihedral angle
- class Bio.PDB.vectors.Vector(x, y=None, z=None)¶
Bases:
object
3D vector.
- __init__(self, x, y=None, z=None)¶
Initialize the class.
- __repr__(self)¶
Return vector 3D coordinates.
- __neg__(self)¶
Return Vector(-x, -y, -z).
- __add__(self, other)¶
Return Vector+other Vector or scalar.
- __sub__(self, other)¶
Return Vector-other Vector or scalar.
- __mul__(self, other)¶
Return Vector.Vector (dot product).
- __truediv__(self, x)¶
Return Vector(coords/a).
- __pow__(self, other)¶
Return VectorxVector (cross product) or Vectorxscalar.
- __getitem__(self, i)¶
Return value of array index i.
- __setitem__(self, i, value)¶
Assign values to array index i.
- __contains__(self, i)¶
Validate if i is in array.
- norm(self)¶
Return vector norm.
- normsq(self)¶
Return square of vector norm.
- normalize(self)¶
Normalize the Vector object.
Changes the state of
self
and doesn’t return a value. If you need to chain function calls or create a new object use thenormalized
method.
- normalized(self)¶
Return a normalized copy of the Vector.
To avoid allocating new objects use the
normalize
method.
- angle(self, other)¶
Return angle between two vectors.
- get_array(self)¶
Return (a copy of) the array of coordinates.
- left_multiply(self, matrix)¶
Return Vector=Matrix x Vector.
- right_multiply(self, matrix)¶
Return Vector=Vector x Matrix.
- copy(self)¶
Return a deep copy of the Vector.
- Bio.PDB.vectors.homog_rot_mtx(angle_rads: float, axis: str) → <built-in function array>¶
Generate a 4x4 single-axis numpy rotation matrix.
- Parameters
angle_rads (float) – the desired rotation angle in radians
axis (char) – character specifying the rotation axis
- Bio.PDB.vectors.set_Z_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray)¶
Update existing Z rotation matrix to new angle.
- Bio.PDB.vectors.set_Y_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray)¶
Update existing Y rotation matrix to new angle.
- Bio.PDB.vectors.set_X_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray)¶
Update existing X rotation matrix to new angle.
- Bio.PDB.vectors.homog_trans_mtx(x: float, y: float, z: float) → <built-in function array>¶
Generate a 4x4 numpy translation matrix.
- Parameters
y, z (x,) – translation in each axis
- Bio.PDB.vectors.set_homog_trans_mtx(x: float, y: float, z: float, mtx: numpy.ndarray)¶
Update existing translation matrix to new values.
- Bio.PDB.vectors.homog_scale_mtx(scale: float) → <built-in function array>¶
Generate a 4x4 numpy scaling matrix.
- Parameters
scale (float) – scale multiplier
- Bio.PDB.vectors.get_spherical_coordinates(xyz: <built-in function array>) → Tuple[float, float, float]¶
Compute spherical coordinates (r, azimuth, polar_angle) for X,Y,Z point.
- Parameters
xyz (array) – column vector (3 row x 1 column numpy array)
- Returns
tuple of r, azimuth, polar_angle for input coordinate
- Bio.PDB.vectors.coord_space(a0: numpy.ndarray, a1: numpy.ndarray, a2: numpy.ndarray, rev: bool = False) → Tuple[numpy.ndarray, Union[numpy.ndarray, NoneType]]¶
Generate transformation matrix to coordinate space defined by 3 points.
- New coordinate space will have:
acs[0] on XZ plane acs[1] origin acs[2] on +Z axis
- Parameters
column array x3 acs (numpy) – X,Y,Z column input coordinates x3
rev (bool) – if True, also return reverse transformation matrix (to return from coord_space)
- Returns
4x4 numpy array, x2 if rev=True
- Bio.PDB.vectors.multi_rot_Z(angle_rads: numpy.ndarray) → numpy.ndarray¶
Create [entries] numpy Z rotation matrices for [entries] angles.
- Parameters
entries – int number of matrices generated.
angle_rads – numpy array of angles
- Returns
entries x 4 x 4 homogeneous rotation matrices
- Bio.PDB.vectors.multi_rot_Y(angle_rads: numpy.ndarray) → numpy.ndarray¶
Create [entries] numpy Y rotation matrices for [entries] angles.
- Parameters
entries – int number of matrices generated.
angle_rads – numpy array of angles
- Returns
entries x 4 x 4 homogeneous rotation matrices