
GenomeDiagram: A User Guide

v0.2

Leighton Pritchard

Scottish Crop Research Institute,

Invergowrie,

Dundee,

DD2 5DA,

UK

December 12, 2011

®

Contents

1 Introduction 2

2 Installation 3

2.1 Dependencies . 3
2.2 Windows . 3
2.3 Linux . 3
2.4 Mac OS X . 3

3 Quick Start: Creating a Simple Diagram 4

3.1 Creating a FeatureSet . 4
3.2 Creating a GraphSet . 4
3.3 Creating a Track . 5
3.4 Creating a Diagram . 5
3.5 Drawing the image . 5
3.6 Writing the image to file . 5

1

4 Creating a Diagram - Long Version: Objects and Methods 6

4.1 GDDiagram . 6
4.1.1 Track methods of GDDiagram 6
4.1.2 Diagram methods of GDDiagram 7

4.2 GDTrack . 8
4.2.1 Set methods of GDTrack 10
4.2.2 Other methods of GDTrack 10

4.3 GDFeatureSet . 11
4.3.1 Feature methods of GDFeatureSet 11
4.3.2 Other methods of GDFeatureSet 11

4.4 GDGraphSet . 12
4.4.1 Feature methods of GDGraphSet 12
4.4.2 Other methods of GDGraphSet 12

5 Creating a Diagram - Long Version: Creating the Diagram 13

5.1 Two Ways to Build a Diagram 13
5.1.1 Bottom-up . 13
5.1.2 Top-Down . 15

5.2 Drawing the diagram . 16

6 Help With Diagram Formatting 16

6.1 How Do I Make a Circular Diagram from a GenBank File? . . . 16
6.2 How Do I Make a Linear Diagram from a GenBank File? 18
6.3 How Do I Change the Colours of Features? 20
6.4 How Do I Change the Graph Format? 22
6.5 How Do I Change the Graph Colours? 22
6.6 How Do I Move Circular Tracks Out From the Centre of the

Diagram? . 25
6.7 How Do I Change the Size of One Track Relative to Another? . . 29
6.8 How Do I Place One Graph on Top of Another? 30

7 Acknowledgements 33

1 Introduction

GenomeDiagram is a Python module containing classes to aid the generation
of publication-quality genome schematics in several vector and bitmap formats.
The module can draw both linear and circular genome diagrams, focusing on a
’slice’ of the full sequence if required. Information can be presented on a number
of ’tracks’ or ’levels’ on the diagram; for example, the inner track of a circular
diagram may be a scale, while outer tracks may describe a plot of GC skew and
selected ORFs.

This user guide is an introductory account of how to use the Diagram class
to generate schematics.

2

2 Installation

This section describes installation procedures for Windows, Mac (OS X) and
Linux.

2.1 Dependencies

The GenomeDiagram module requires BioPython (http://www.biopython.org)
and ReportLab (http://www.reportlab.com). Rendering of fonts in bitmaps
may also require the installation of ˙renderPM (http://www.reportlab.com/rl˙addons)
and Adobe Acrobat Reader and fonts (http://www.adobe.com).

2.2 Windows

The GenomeDiagram libraries are provided as a Windows installer. To install,
double-click on the installer file GenomeDiagram-n.n.win32.exe (the numbers
n.n depend on the version of the library you’ve downloaded). The installation
wizard will walk you through the installation process.

2.3 Linux

The GenomeDiagram libraries are provided as a source distribution in the file
GenomeDiagram-n.n.tar.gz. Copy this file to a temporary directory, and un-
tar/unzip it:

tar -zxvf GenomeDiagram-0.1.tar.gz

This will unzip the source files into the directory GenomeDiagram-0.1. Change
directory to this folder, and use

python setup.py install

to install the libraries.

2.4 Mac OS X

The Mac OS X installation works the same way as the Linux installation. Copy
the GenomeDiagram-n.n.tar.gz file to a temporary directory and uncompress it
with

tar -zxvf GenomeDiagram-0.1.tar.gz

in the shell. Change to the newly-created directory (GenomeDiagram-0.1
here) and use

python setup.py install

to install the libraries.
If you have separate Python, Fink Python and MacPython installations,

problems may arise. On my machine (G4 Powerbook, 10.2.6, MacPython 2.3),
installing GenomeDiagram from the shell allowed me to use the package under
Python in the shell and also from MacPython. Your mileage may vary.

3

3 Quick Start: Creating a Simple Diagram

The process of creating a diagram generally follows this simple pattern:

• create a FeatureSet for each separate set of features you want to display,
and add Bio.SeqFeature objects to them

• create a GraphSet for each graph you want to display, and add graph data
to them

• create a Track for each track you want on the diagram, and add GraphSets
and FeatureSets to the tracks you require

• create a Diagram, and add the Tracks to it

• tell the Diagram to draw the image

• write the image to a file

The diagram may be altered - features, scales and plots added or removed,
their colours, fonts and other display attributes changed - and multiple files
may be written out from the same diagram. For the purposes of this document,
however, only drawing single diagrams will be considered.

The following subsections describe the creation of a very simple graph, which
doesn’t take into account the many formatting options that are available. The
ways in which more elaborate graphs may be constructed are described in more
detail below.

3.1 Creating a FeatureSet

First import the GenomeDiagram package with
from GenomeDiagram import *

To create a handle to a new FeatureSet, use
gdfs = GDFeatureSet(’name of the featureset’)

The argument passed above is optional, to name the FeatureSet for ease of
reference.

It doesn’t matter how you obtain your set of Bio.SeqFeature objects - one
way is via Biopython’s Bio.GenBank.FeatureParser() - but once you have it you
can add features one-by-one using the FeatureSet’s add˙feature method

for feature in feature_list: gdfs.add_feature(feature)

3.2 Creating a GraphSet

With theGenomeDiagram package imported, create a handle to a new Graph-
Set with

gdgs = GDGraphSet(’name of the graphset’)

As with the FeatureSet, the name argument is optional. To add a graph,
use the GraphSet’s new˙graph method

gdgs.new_graph(graphdata, name=’Graph Name’)

4

new˙graph expects a list of (position, value) tuples as its first argument,
where position relates to the value’s location on the sequence to be drawn.
name is an optional string describing the graph, while style must be one of
the graph format types. The argument passed to colour must be a report-
lab.lib.colors.Color object.

3.3 Creating a Track

With the GenomeDiagram package imported, create a handle to a new Track
with

gdt = GDTrack(’name of track’)

FeatureSets and GraphSets may be added to a track with the add˙set method.
gdt.add_set(gdgs)

gdt.add_set(gdfs)

3.4 Creating a Diagram

With the GenomeDiagram package imported, create a handle to a new Dia-
gram with

gdd = GDDiagram(’name of diagram’)

Again the string argument is an optional descriptive name for the diagram
Tracks are added to the Diagram using the add˙track method
gdd.add_track(gdt, level)

where level is an integer denoting which level the track should be added at
on the diagram.

3.5 Drawing the image

The features, graphs and other elements of the image are compiled using the
draw method of the Diagram

gdd.draw()

Until it is explicitly written to file, the image is retained only in memory.
Any changes made to the drawing settings however, must be checked in with
the draw method

3.6 Writing the image to file

The compiled drawing is written to file with the passed filename using the
Diagram’s write method

gdd.write(filename, format)

The filename must be a valid file location, while the format should be one
of the available image file format identifiers (see below).

5

4 Creating a Diagram - Long Version: Objects

and Methods

In GenomeDiagram, the diagram structure is hierarchical: the Diagram itself
contains, and is built from, Tracks which contain either FeatureSets or Graph-
Sets. FeatureSets contain individual features, while GraphSets contain graph
data. Tracks may be moved around the diagram independently of each other,
and Sets may be moved between Tracks independently of each other.

4.1 GDDiagram

The keystone of GenomeDiagram is the GDDiagram object. This object
provides the top-level interface for drawing the image, and also acts as the
container for the data used to construct the diagram. This data is supplied in
Tracks, each of which holds feature and/or graph information. Each track is
displayed at a single level on the diagram; For a circular diagram, levels are
numbered consecutively running outwards from the centre of the drawable area.
For a linear diagram, they are numbered consecutively from the base of each
sequence fragment.

GDDiagram has only one attribute, name, holding a short descriptive string
describing the diagram as a whole. This string may be passed when instantiating
an object.

GDDiagram’s methods are divided into two types - those manipulating
tracks, and those manipulating the diagram:

4.1.1 Track methods of GDDiagram

Specific tracks of the diagam may be retrieved from the diagram by subscripting
the object with the level at which they appear, e.g. gdd[3] will return the track
at level 3 of the GDDiagram instance gdd.

• new˙track(track˙level) Creates a new GDTrack object at the passed track˙level
on the diagram, and returns it to the user for the addition of FeatureSets
and/or GraphSets. If the passed level is already occupied, outer tracks
are shunted up a level.

• add˙track(track, track˙level) Adds an existing GDTrack object (trackto the
diagram, to be displayed at the level indicated by the integer track˙level. If
the passed track˙level is already occupied, the outer tracks of the diagram
are pushed outwards by a level.

• move˙track(from˙level, to˙level) Moves an existing GDTrack object from
one level (from˙level) to another (to˙level) on the same diagram.

• get˙tracks() Returns a list of the GDTrack objects contained in the dia-
gram.

6

• get˙levels() Returns a list of the levels in the diagram that are already
occupied by GDTrack objects.

• get˙drawn˙levels() Returns a list of the levels in the diagram that are oc-
cupied by GDTrack objects, and will be shown (have their hide attribute
set to 0).

• del˙track(track˙level) Removes the GDTrack object found at the level in-
dicated by track˙level from the GDDiagram object.

• renumber˙tracks(low=1) Renumbers all GDTrack objects in the GDDia-
gram object consecutively from a passed integer, low (default=1).

• range() Returns, as an integer tuple, the highest and lowest base posi-
tions indicated in any of the GDTrack child objects contained within the
GDDiagram object.

4.1.2 Diagram methods of GDDiagram

• draw(format=’circular’, pagesize=’A3’, orientation=’landscape’, x=0.05,
y=0.05, xl=None, xr=None, yt=None, yb=None, start=None, end=None,
tracklines=0, fragments=10, fragment˙size=0.9, track˙size=0.75, circular=1)
Constructs the diagram to be written out. Numerous formatting options
are available here:

– format is either ’circular’ or ’linear’, for the choice of circular or linear
diagram (default=’circular’).

– pagesize should be either a tuple of floats as (page width, page height)
in pixels, or a string denoting a recognised ISO page size, such as ’A4’,
’LEGAL’, ’LETTER’, etc. (default=’A3’).

– orientation is either ’landscape’ or ’portrait’ and refers to the orien-
tation of the page on which the diagram sits, not the format of the
image itself (default=’landscape’).

– x is a float indicating the size of the X (vertical) margins as a pro-
portion of the whole page (default=0.05).

– y is a float indicating the size of the Y (horizontal) margins as a
proportion of the whole page (default=0.05)

– xl is a float indicating the size of the left X margin, as a proportion
of the whole page. If specified, this overrides the parameter x.

– xr is a float indicating the size of the right X margin, as a proportion
of the whole page. If specified, this overrides the parameter x.

– yt is a float indicating the size of the top Y margin, as a proportion
of the whole page. If specified, this overrides the parameter y.

– yb is a float indicating the size of the bottom Y margin, as a pro-
portion of the whole page. If specified, this overrides the parameter
y.

7

– start is an int indicating the base position from which to begin draw-
ing the diagram.

– end is in int indicating the base position at which to stop drawing
the diagram.

– track˙size is a float specifying what proportion of the vertical space
available to each track should be taken up by the drawing of the track
(default=0.75).

– tracklines is a Boolean indicating whether a set of lines delineating
each track should be superimposed on the diagram (default=0).

– fragments is an integer specifying how many sections the sequence
should be divided into on a linear diagram. This is necessary for
clarity, to avoid unreadable compression of diagram information in
the X direction (default=10).

– fragment˙size is a float specifying what proportion of the vertical
space available to each fragment should be taken up by the drawing
of the fragmwriteent (default=0.9).

– circular is a Boolean value describing whether the sequence to be
drawn is circular or not - this is only directly relevant to circular
diagrams.

The parameters listed above are also attributes of the object which may
be accessed directly.

Once drawn, the diagram remains ’virtual’ in memory until written out
to file. Once the draw() method is called, if the diagram is modified, the
draw() method must be called again before the changes are applied.

• write(filename=’test1.ps’, output=’PS’) Writes the diagram out as an im-
age to the filename passed as filename, in the format specified by output.
Both raster (BMP, JPG, PNG etc.) and vector (EPS, PDF) formats are
supported via ReportLab and RasterPM.

4.2 GDTrack

The GDTrack object is the largest scale of granularity for the diagram. It con-
tains sets of features and/or graphs, and general formatting information for the
track as a whole. Tracks may also incorporate a ’greytrack’, which comprises a
shaded track background and a superimposed label (the name attribute) fore-
ground, and/or a scale. The track scale comprises a line running through the
centre of the track, and ticks that run perpendicular to this. There are two types
of tick, nominally long and short, and each may be labelled and manipulated
separately. GDTrack provides methods for manipulating graph and feature sets,
while track attributes may be accessed directly. These attributes may also be
set on instantiation, and are listed below:

• name is a short descriptive string

8

• height is a float denoting the height of the track, relative to other tracks
on the diagram (default=1).

• hide is a Boolean specifying whether the track should be drawn or not (de-
fault=0). Only tracks with hide=0 are listed by the GDDiagram method
get˙drawn˙levels().

• greytrack is a Boolean specifying whether the track should include a grey
background (useful for delineating many closely-spaced tracks), and a set
of foreground labels (default=0).

• greytrack˙labels is an integer specifying the number of foreground labels
that should be included on the track (default=5).

• greytrack˙fontsize is an integer specifying the size of font to be used on the
foreground labels (default=8).

• greytrack˙font is a string specifying the name of the font to be used for the
foreground labels. Not all machines will provide the same font selection
(default=’Helvetica’).

• greytrack˙font˙rotation is an integer specifying the angle in degrees through
which to rotate the foreground labels, which are, by default, radial in circu-
lar diagrams and collinear with the track for linear diagrams (deafult=0).

• greytrack˙font˙colour is a ReportLab colors.Color object defining the colour
of the foreground labels (default=colors.Color(0.6,0.6,0.6)).

• scale is a Boolean defining whether the track will carry a scale (default=1).

• scale˙colour is a ReportLab colors.Color object defining the colour of the
scale (default=colors.black).

• scale˙font is a string specifying the font to use on the scale; not all machines
provide the same selection (default=’Helvetica’).

• scale˙fontsize is an integer specifying the size of font to use for the scale
(default=6).

• scale˙fontangle is an integer specifying the angle, in degrees, through which
to rotate the scale labels relative, on circular diagrams, to the tangent to
the scale at that point or, on linear diagrams, to the scale itself (de-
fault=45).

• scale˙ticks is a Boolean denoting whether any ticks will be shown on the
scale (default=1).

• scale˙largeticks is a float describing the height of the large tick set as a
proportion of half the track height. Positive values run ’upwards’ (linear)
or away from the centre of the diagram (circular), while negative values
run in the opposite direction (default=0.5).

9

• scale˙smallticks is a float describing the height of the small tick set as a
proportion of half the track height. Positive values run ’upwards’ (linear)
or away from the centre of the diagram (circular), while negative values
run in the opposite direction (default=0.3).

• scale˙largetick˙interval is an integer specifying the interval between large
ticks as a number of bases (default=1000000).

• scale˙smalltick˙interval is an integer specifying the interval between smallticks
as a number of bases (default=10000).

• scale˙largetick˙labels is a Boolean describing whether labels marking tick
position will be placed over every large tick (default=1).

• scale˙smalltick˙labels is a Boolean describing whether labels marking tick
position will be places over every small tick (default=0).

The attributes described above are gross attributes of the track presentation
as a whole. The track’s additional role is to contain sets of features and graphs,
which are manipulated by the following methods:

4.2.1 Set methods of GDTrack

Individual sets contained within a GDTrack object may be retrieved by sub-
scripting with their unique ID, e.g. gdt[6] would return the set with unique
ID 6.

• new˙set(type=’feature’) Creates a new GDFeatureSet (type=’feature’) or
GDGraphSet (type=’graph’) object, adds it to the track, then returns it
to the user so that features may be added.

• add˙set(set) Adds a preexisting GDFeatureSet or GDGraphSet, passed as
set to the track.

• get˙sets() Returns a list of the graph and feature sets contained in the
track.

• get˙ids() Returns a list of the unique IDs for all sets in the track.

• del˙set(id) Removes the set with the passed unique ID from the track.

• range() Returns a tuple of the lowest and highest bases represented by
features and/or graphs on the track.

4.2.2 Other methods of GDTrack

There is one further method provided by GDTrack, which returns an account
of the contents of the track.

• to˙string(verbose=0) Returns a formatted string containing an account of
the GDTrack object’s contents. verbose is a Boolean specifying whether
the long or short form of this string is returned.

10

4.3 GDFeatureSet

The GDFeatureSet object is a container for GDFeature objects, and provides
methods for manipulating them. Formatting information is not held at the
GDFeatureSet level, but at the GDFeature level. GDFeatureSet has only two
attributes, its unique ID, id for reference via GDTrack objects, and name, con-
taining a short descriptive string. Both attributes may be set at instantiation.

4.3.1 Feature methods of GDFeatureSet

As with GDDiagram and GDTrack objects, features contained within GDFea-
tureSets may be retrieved by subscripting the feature set object with the unique
ID of the feature, e.g. gdfs[954] returns the feature with unique ID 954. The
number of features in a feature set may be found by using the len operator, i.e.
len(gdfs).

• add˙feature(feature, colour=colors.lightgreen)This method adds a Bio.SeqFeature
object (from the BioPython package) to the feature set as the feature ar-
gument, with an optional rendering ReportLab colors.Color object colour
argument (default=colors.lightgreen). The add˙feature method will pro-
cess a Bio.SeqFeature ’colour’ qualifier containing an integer corresponding
to a member of the Artemis colour scheme.

• get˙features() Returns a list of GDFeature objects contained in the feature
set.

• get˙ids() Returns a list of unique identifiers for the features contained in
the set.

• set˙all˙features(attr, value) For all features in the feature set, assigns the
passed value to the attribute attr (passed as a string of the attribute’s
name).

• del˙feature(id) Deletes the feature with the passed unique ID from the
feature set.

• range() Returns a tuple of the highest and lowest bases covered by the
features in the feature set.

4.3.2 Other methods of GDFeatureSet

The GDFeatureSet object also provides:

• to˙string(verbose=0) Returns a formatted description of the contents of
the feature set in either long (verbose=1) or short(default, verbose=0)
form.

11

4.4 GDGraphSet

The GDGraphSet object is a container for GDGraphData objects, and provides
methods for manipulating them. Formatting information is not held at the
GDGraphSet level, but at the GDGraphData level. GDGraphSet, like GDFea-
tureSet, with which it shares many properties, has only two attributes, its unique
ID, id for reference via GDTrack objects, and name, containing a short descrip-
tive string. Both attributes may be set at instantiation.

4.4.1 Feature methods of GDGraphSet

GDGraphSet objects contain GDGraphData objects, which in turn contain a
series of values for each position on the sequence. As with GDFeatureSet ob-
jects, these values may be retrieved by subscripting the GDGraphSet object
with the position, e.g. gdgs[397] returns the data value at position 397. The
number of datapoints in a graph set may be found by using the len operator,
i.e. len(gdgs).

• new˙graph(data, name, style=’bar’, colour=colors.lightgreen, altcolour=colors.darkseagreen)
This method adds a new dataset to the GDGraphSet object. data should
be a list of (position, value) tuples, while name should be a short descrip-
tive string. The graph drawing format is specified by the style argument;
this may be one of the strings ’bar’, ’heat’ or ’line’. The colour argument
specifies the colour of the line in the ’line’ format graph, and the colour of
’high’ values (greater than the median value) in ’bar’ and ’heat’ graphs.
The altcolour argument denotes the colour to be used for values below
the median in ’bar’ and ’heat’ graphs. Both colour arguments expect a
colors.Color object.

• get˙graphs() Returns a list of GDGraphData objects contained in the
graph set.

• get˙ids() Returns a list of unique identifiers for the graphs contained in
the set.

• del˙graph(id) Deletes the graph with the passed unique ID from the feature
set.

• range() Returns a tuple of the highest and lowest bases covered by the
graphs in the feature set.

4.4.2 Other methods of GDGraphSet

The GDGraphSet object also provides:

• to˙string(verbose=0) Returns a formatted description of the contents of
the graph set in either long (verbose=1) or short(default, verbose=0) form.

12

5 Creating a Diagram - Long Version: Creating

the Diagram

5.1 Two Ways to Build a Diagram

There are two approaches to constructing a sequence diagram using the Genome-
Diagram library. One (outlined in section 3) involves constructing the diagram
from the bottom up, first filling a GDFeatureSet with features and adding it
to a GDTrack, and so on. The second is a top-down approach, first creating
a diagram, and successively obtaining new tracks and feature- and graph sets.
Both methods are described below.

5.1.1 Bottom-up

For this approach, we obtain our features, then bundle them into one or more
feature sets; graphs are also bundled into one or more graph sets. These sets
are then apportioned amongst GDTrack objects, which are then added to the
GDDiagram itself.

• Import modules

from Bio import GenBank

from GenomeDiagram import GDDiagram, GDFeatureSet, GDGraphSet, GDTrack, GDUtilities.gc_co

For this example we need the Bio.GenBank module only to obtain a set
of Bio.SeqFeature objects. Any way you choose to obtain Bio.SeqFeature
objects will do. The GD* classes are the building blocks for making the
diagram, and are necessary for the bottom-up method of constructing the
diagram.

• Obtain a set of Bio.SeqFeature objects

parser = GenBank.FeatureParser()

fhandle = open(’NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

For this example we use the GenBank.FeatureParser object to parse the
[i]Nanoarchaeum equitans[/i] sequence contained in the GenBank file NC˙005213.gbk.
This method returns an object containing multiple Bio.SeqFeature objects,
which may be looped over, as seen below.

• Assign features to a feature set

gdfs = GDFeatureSet(name=’CDS features’)

for feature in genbank_entry.features:

13

if feature.type == ’CDS’:

gdfs.add_feature(feature)

Here we first create our feature set, assigning it to the variable gdfs, and
giving it the name ’CDS features’. Then we loop over the set of features
in the Genbank Entry, and add each one to the feature set.

• Assign graph data to a graph set

gdgs = GDGraphSet(’GC Content’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

gdgs.new_graph(graphdata, ’GC content’, style=’line’)

Here we create our graph set, assigning it to the variable gdgs and as-
cribing it the name ’GC Content’. We obtain our graph data by using
the GDUtilities function gc_content with 100 base windows, though any
method that returns a list of (position, value) tuples will do. Lastly,
we add this graph data to the graph set using the GDGraphSet method
new_graph, with the name ’GC Content’, and the style set to ’line’, for a
line graph.

• Creating tracks and adding sets to them

gdt1 = GDTrack(’CDS features’, greytrack=1)

gdt2 = GDTrack(’GC Content’, greytrack=1)

gdt1.add_set(gdfs)

gdt2.add_set(gdgs)

Two tracks are created, and assigned to the variables gdt1 and gdt2, re-
spectively labelled ’CDS features’ and ’GC content’. The greytrack pa-
rameter adds a grey background and a foreground label to each track.
The add_set method is used to add the feature set gdfs to gdt1 and the
graph set gdgs to gdt2.

• Adding tracks to the diagram

gdd = GDDiagram(’NC_005213.gbk’)

gdd.add_track(gdt1, 2)

gdd.add_track(gdt2, 4)

The GDDiagram object is assigned to the variable gdd, and given the
name ’NC˙005213.gbk’. Its add_track method is then used to add tracks
gdt1 and gdt2 to track numbers 2 and 4 respectively. The diagram is now
ready for drawing

14

5.1.2 Top-Down

• Import modules

from Bio import GenBank

from GenomeDiagram import GDDiagram, GDUtilities.gc_content

When working top-down, the only required GenomeDiagram import is of
GDDiagram. The Bio.GenBank and GDUtilities imports are here only to
allow the example to work.

• Creating the diagram

gdd = GDDiagram(’NC_005213.gbk’)

The diagram is created first, and given the name ’NC˙005213.gbk’.

• Adding tracks to the diagram

gdt1 = gdd.new_track(2, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(4, greytrack=1, name=’GC content’)

Tracks are obtained by calling the new_track method of the GDDiagram
object. Parameters for the track can be specified following the level at
which the track is to be added, but must be specified by keyword.

• Adding graph and feature sets to the diagram

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

Feature and graph sets are obtained by calling the new_setmethod of the
GDTrack object. The type of set required is passed as the first parameter,
and parameters for each set can be specified following the type, but must
be specified by keyword.

• Adding features and graphs to the diagram

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

gdgs.new_graph(graphdata, ’GC content’, style=’line’)

15

for feature in genbank_entry.features:

if feature.type == ’CDS’:

gdfs.add_feature(feature)

We again use the Bio.GenBank.FeatureParser to read in a GenBank for-
mat file and obtain a set of Bio.SeqFeature objects, and the GDUtili-
ties.gc˙content function to generate the graph data. Neither of these is
the only method of obtaining this information, and any way obtaining a
set of Bio.SeqFeature objects or a list of (position, value) tuples would do.

The method of adding feature and graph data to the feature and graph
sets is identical to the bottom-up method. Adding features is achieved
by looping over the contents of the genbank˙entry object, applying the
GDFeatureSet’s add_feature method. Adding graph data is done using
the GDGraphSet’s new_graph method. The diagram is again ready for
drawing.

5.2 Drawing the diagram

Though there is more than one way to build a diagram, there is only one way to
draw it in the GenomeDiagram library. The GDDiagram’s draw method is used
to make up the drawing, and the write method to write the resulting image to
a file.

gdd.draw(format=’linear’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=0)

gdd.write(’NC_005213.ps’, ’PS’)

The resulting image is identical, whichever build method is used, and can
be seen in figure 1.

6 Help With Diagram Formatting

This section contains some advice on how to use the GenomeDiagram package
to achieve specific formatting effects. It is far from exhaustive, but contains
examples and working code that may be useful in exploring further. Examples
are presented in a ’How Do I...?’ format:

6.1 How Do I Make a Circular Diagram from a GenBank

File?

To build a basic circular diagram, first you need to obtain features from the
GenBank file - this can be done using BioPython:

16

1

1

16
.0

00
78

.0
00

16
.0

00
78

.0
00

16
.0

00
78

.0
00

16
.0

00
78

.0
00

16
.0

00
78

.0
00

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

GC Content GC Content GC Content GC Content GC Content

GC Content GC Content GC Content GC Content GC Content

GC Content GC Content GC Content GC Content GC Content

GC Content GC Content GC Content GC Content GC Content

GC Content GC Content GC Content GC Content GC Content

Figure 1: Output from section 5.2. The same result is achieved whether a
top-down or bottom-up approach to constructing the diagram is used

17

figure from Bio import GenBank

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

Then you can build a diagram as described above (section 5):

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(1, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

gdgs.new_graph(graphdata, ’GC content’, style=’line’)

for feature in genbank_entry.features:

if feature.type == ’CDS’:

gdfs.add_feature(feature)

gdd.draw(format=’circular’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

6.2 How Do I Make a Linear Diagram from a GenBank

File?

To construct a basic linear diagram, follow the template in section 6.1, passing
the value ’linear’ as the argument to format in gdd.draw:

from Bio import GenBank

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(1, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

gdgs.new_graph(graphdata, ’GC content’, style=’line’)

for feature in genbank_entry.features:

if feature.type == ’CDS’:

18

1

1

16.000

78.000

16.000

78.000

16.000

78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 2: Output from section 6.1, a basic circular diagram.

19

gdfs.add_feature(feature)

gdd.draw(format=’linear’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

1

1

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16
.0

00

78
.0

00

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

Figure 3: Output from section 6.2, a basic linear diagram.

6.3 How Do I Change the Colours of Features?

There is more than one way to do this. You could explicitly pass a colour
as an argument to the add_feature method: gdfs.add_feature(feature,

colour=colors.red) or you could colour all features simulataneously with the
set_all_featuresmethod: gdfs.set_all_features(’colour’, colors.red)

. Alternatively, you could examine individual features, retrieving them as sub-
scripts with, e.g. feature = gdfs[35] and changing the attribute directly with
the set_colour method: feature.set_colour(colors.red). An example is
given below:

from Bio import GenBank

from reportlab.lib import colors

parser = GenBank.FeatureParser()

20

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(1, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

gdgs.new_graph(graphdata, ’GC content’, style=’line’)

for feature in genbank_entry.features:

if feature.type == ’CDS’:

gdfs.add_feature(feature, colour=colors.red)

gdd.draw(format=’linear’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

1

1

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16
.0

00

78
.0

00

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

GC content GC content GC content GC content GC content

Figure 4: Output from section 6.3, all features have been coloured red.

21

6.4 How Do I Change the Graph Format?

The graph format may be changed between a simple line graph, a bar graph,
and a ’heat’ graph. This may done by changing the argument to new_graph,
e.g. gdgs.new_graph(graphdata, ’Graph name’, style=’bar’), or by di-
rectly changing the style attribute of a graph object, once created. The eas-
iest way to do this is by retaining a handle to the GDGraph object created
by new_graph, e.g. graph = gdgs.new_graph(graphdata, ’Name’, ’heat’)

and changing the style attribute direclty with graph.style=’bar’. For line
graphs, the thickness of the line may be changed by setting the graph’s linewidth
attribute, e.g. graph.linewidth=0.5. Example code is given below:

from Bio import GenBank

from reportlab.lib import colors

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(1, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

graph = gdgs.new_graph(graphdata, ’GC content’, style=’line’)

graph.style=’bar’

for feature in genbank_entry.features:

if feature.type == ’CDS’:

gdfs.add_feature(feature, colour=colors.red)

gdd.draw(format=’circular’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

6.5 How Do I Change the Graph Colours?

The way graph colours work depends on the graph format. For line graphs, only
a single colour is required - that of the line to be drawn. For heat and bar graphs,
two colours are needed - one for values above the midpoint, and one for values
beolow the midpoint of the data. The easiest way to specify these is when adding
the new graph, e.g. graph = gdgs.new_graph(graphdata, ’Graph name’,

style=’bar’, colour=colors.violet, altcolour=colors.purple). Here,
colour is the colour of the line, or of high data values, while altcolour is the
colour of low data values. Example code is given below:

from Bio import GenBank

22

1

1

16.000

78.000

16.000

78.000

16.000

78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 5: Output from section 6.4, graph in ’bar’ style.

23

1

1

16.000

78.000

16.000

78.000

16.000

78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 6: Output from section 6.4, graph in ’heat’ style.

24

from reportlab.lib import colors

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(1, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

graph = gdgs.new_graph(graphdata, ’GC content’, style=’bar’,

colour=colors.violet, altcolour=colors.purple)

for feature in genbank_entry.features:

if feature.type == ’CDS’:

gdfs.add_feature(feature, colour=colors.red)

gdd.draw(format=’circular’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

6.6 How Do I Move Circular Tracks Out From the Centre

of the Diagram?

You can use the renumber_tracks method of a GDDiagram object to move
tracks outwards from the centre of the circular diagram, e.g. gdd.renumber_tracks(5).
Alternatively, you can create the tracks at outer levels to begin with. Example
code is given below, moving the first track out to level four on the diagram:

from Bio import GenBank

from reportlab.lib import colors

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(1, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

graph = gdgs.new_graph(graphdata, ’GC content’, style=’bar’,

colour=colors.violet, altcolour=colors.purple)

for feature in genbank_entry.features:

25

1

1

16.000

78.000

16.000

78.000

16.000

78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 7: Output from section 6.5, graph in ’line’ style.

26

1

1

16.000

78.000

16.000

78.000

16.000

78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 8: Output from section 6.5, graph in ’bar’ style.

27

1

1

16.000

78.000

16.000

78.000

16.000

78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 9: Output from section 6.5, graph in ’heat’ style.

28

if feature.type == ’CDS’:

gdfs.add_feature(feature, colour=colors.red)

gdd.renumber_tracks(4)

gdd.draw(format=’circular’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

1

1

16.000

78.000

16.000

78.000

16.000 78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 10: Output from section 6.6, with tracks now beginning at level four.

6.7 How Do I Change the Size of One Track Relative to

Another?

Each track has a height attribute. On drawing, the height attributes of all
tracks are summed to give a total - the relative height of each track is then
its height divided by the sum of all track heights. Here, as all tracks start off
with a default height of 1, we double the height of the graph track when we cre-
ate it, using gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’,

height=2). The same effect could have been achieved by changing the height
attribute directly, e.g. gdt2.height=2, once the handle to the GDTrack object
had been obtained. Example code is given below, making the graph track twice
the height of the feature track.

29

from Bio import GenBank

from reportlab.lib import colors

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(1, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(2, greytrack=1, name=’GC content’, height=2)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata = GDUtilities.gc_content(genbank_entry.seq, 100)

graph = gdgs.new_graph(graphdata, ’GC content’, style=’bar’,

colour=colors.violet, altcolour=colors.purple)

for feature in genbank_entry.features:

if feature.type == ’CDS’:

gdfs.add_feature(feature, colour=colors.red)

gdd.renumber_tracks(4)

gdd.draw(format=’circular’, orientation=’landscape’,

tracklines=0, pagesize=’A5’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

6.8 How Do I Place One Graph on Top of Another?

Since each GDGraphSet object can hold more than one graph, it is possible to
place two graphs or more in each graph set, though legibility can be a problem.
When building the diagram, ecah graphset’s graphs are added in order of in-
creasing id. Since ids are assigned sequentially in order of addition of the graph
to the graphset, graphs are also drawn in order of addition to the graphset. It is
probably best that line graphs are added to graphsets after bar or heat graphs,
or else the thin lines will be obscured by the thick bars or heat blocks.

Also, the thickness of lines in line graphs may obscure the underlying heat
or bar graphs at smaller page sizes, so it may be necessary to increase page
size for vector graphics, and adjust fonts, etc. accordingly, in order to reduce
linewidths enough to make the underlying graphs visible. Example code is given
below, adding first a bar graph, then a line graph in contrasting colour, and then
increasing page size to A3, as the line thickness is too great for A5::

from Bio import GenBank

from reportlab.lib import colors

parser = GenBank.FeatureParser()

fhandle = open(’/data/genomes/Bacteria/Nanoarchaeum_equitans/NC_005213.gbk’, ’r’)

genbank_entry = parser.parse(fhandle)

fhandle.close()

30

1

1

16.000

78.000

16.000

78.000

16.000

78.000

16.000

78.000

16
.0

00

78
.0

00

16
.0

00

78
.0

00

16.000

78.000

C
D

S
 fe

at
ur

es

CDS features

C
D

S featuresC
D

S
fe

at
ur

es

CDS features

G
C

 c
on

te
nt

GC content

G
C

 contentG
C

 c
on

te
nt

GC content

Figure 11: Output from section 6.7, with the graph track now twice the size of
the feature track.

31

from GenomeDiagram import GDDiagram, GDUtilities

gdd = GDDiagram(’NC_005213.gbk’)

gdt1 = gdd.new_track(4, greytrack=1, name=’CDS features’)

gdt2 = gdd.new_track(6, greytrack=1, name=’Graphs’, height=2)

gdfs = gdt1.new_set(’feature’)

gdgs = gdt2.new_set(’graph’)

graphdata1 = GDUtilities.gc_content(genbank_entry.seq, 100)

graphdata2 = GDUtilities.gc_skew(genbank_entry.seq, 100)

graph1 = gdgs.new_graph(graphdata1, ’GC content’, style=’bar’,

colour=colors.violet, altcolour=colors.purple)

graph2 = gdgs.new_graph(graphdata2, ’GC skew’, style=’line’,

colour=colors.lightgreen)

for feature in genbank_entry.features:

if feature.type == ’CDS’:

gdfs.add_feature(feature, colour=colors.red)

gdd.draw(format=’circular’, orientation=’landscape’,

tracklines=0, pagesize=’A3’, fragments=5, circular=1)

gdd.write(’NC_005213.ps’, ’PS’)

1

1

16
.0

00
;-0

.8
10

78
.0

00
;0

.8
46

16
.0

00
;-0

.8
10

78
.0

00
;0

.8
46

16
.0

00
;-0

.8
10

78
.0

00
;0

.8
46

16
.0

00
;-0

.8
10

78
.0

00
;0

.8
46

16
.0

00
;-0

.8
10

78
.0

00
;0

.8
46

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

CDS features CDS features CDS features CDS features CDS features

Graphs Graphs Graphs Graphs Graphs

Graphs Graphs Graphs Graphs Graphs

Graphs Graphs Graphs Graphs Graphs

Graphs Graphs Graphs Graphs Graphs

Graphs Graphs Graphs Graphs Graphs

Figure 12: Output from section 6.8, with a line graph of GC skew (green)
superimposed on a bar graph of GC content (violet/purple).

32

7 Acknowledgements

I would like to thank Ian Toth for the excuse to write this package, Kim Ruther-
ford and Keith James for some example Perl code, and Robin Becker for invalu-
able help with ReportLab.

33

