
Useful Scripting for Biologists

Brad Chapman

23 Jan 2003

Objectives

• Explain what scripting languages are

• Describe some of the things you can do with a scripting language

• Show some tools to use once you pick a language

• Show an example of how I’ve used scripting languages

• Overall, convince you it’s worthwhile to learn to program in a scripting
language

1

Who am I?

• Biologist – all of my background is in lab work

• Took two programming classes as an undergrad (C++)

• Needed programming for my work when I came to UGa

• Taught myself to program in the scripting language python

2

What is a scripting language?

In Computer Science terms

• Dynamically typed (do not have to declare variables)

• Are not compiled

In Practical Terms

• Faster to learn to program in

• Easier to debug and fix problems

• Programs run slower, however, because of the niceties

3

Examples of scripting languages

• Perl – http://www.perl.com

• Python – http://www.python.org

• Tcl – http://tcl.sourceforge.net/

• Ruby – http://www.ruby-lang.org/en/

• ”Web” languages – JavaScript, PHP

• Others – Lisp, Scheme, Ocaml

4

http://www.perl.com
http://www.python.org
http://tcl.sourceforge.net/
http://www.ruby-lang.org/en/

Some things scripting languages make easier

• Dealing with text files

• Interacting with the web

• Making graphical user interfaces

• Creating dynamic web pages

• Tieing together multiple programs

• Parsing information from files or
web pages

• Retrieving information from
Databases

• Reorganizing data (ie. into a
spreadsheet ready format)

• Generating figures

• Automating repetitive daily tasks

• Writing one-time programs

5

Other Practical Advantages of Scripting Languages

• All those mentioned are freely available and most have very non-restrictive
licenses

• Lots of free documentation on the web for learning how to program in
the language

– Python – http://www.python.org/doc/current/tut/tut.html
– Ruby – http://www.rubycentral.com/book/

• Really relieves your frustration level in programming compared to
compiled languages like C++

• Programs can often be written quicker because you don’t have to worry
about compiling woes, variable declaration and so on

6

http://www.python.org/doc/current/tut/tut.html
http://www.rubycentral.com/book/

How do you choose a scripting language?

• Want to pick something easy to learn and get started with

• Make a list of some things you want to do with the language and look
for languages that have ready made packages for what you’d like to do

– Python – Interact with Excel on a Windows computer: Python
Windows Extensions

– Perl – Create charts for display on the web: GDGraph
– Tcl – write a graphical user interface : Tk

• Looking at the code in different languages to see what appeals to you

• Try them out

7

Perl code

$nBottles = $ARGV[0];
$nBottles = 100 if $nBottles eq ’’ || $nBottles < 0;

foreach (reverse(1 .. $nBottles)) {
$s = ($_ == 1) ? "" : "s";
$oneLessS = ($_ == 2) ? "" : "s";
print "\n$_ bottle$s of beer on the wall,\n";
print "$_ bottle$s of beer,\n";
print "Take one down, pass it around,\n";
print $_ - 1, " bottle$oneLessS of beer on the wall\n";

}
print "\n*burp*\n";

8

Python code

def bottle(n):
try:

return { 0: "no more bottles",
1: "1 bottle"} [n] + " of beer"

except KeyError: return "%d bottles of beer" % n

for i in range(99, 0, -1):
b1, b0 = bottle(i), bottle(i-1)
print "%(b1)s on the wall, %(b1)s,\n"\

"take one down, pass it around,\n"\
"%(b0)s on the wall." % locals()

9

Tcl code

proc bottles {i} {
return "$i bottle[expr $i!=1?"s":""] of beer"

}

proc line123 {i} {
puts "[bottles $i] on the wall,"
puts "[bottles $i],"
puts "take one down, pass it around,"

}

proc line4 {i} {
puts "[bottles $i] on the wall.\n"

}

for {set i 99} {$i>0} {} {
line123 $i
incr i -1
line4 $i

}

10

Biological Tools for Scripting Languages

• Because the advantages of scripting languages help ease a lot of biological
problems (ie. file parsing) there are good resources for code for scripting
language

• Open-Bio set of projects

– BioPerl – http://www.bioperl.org
– Biopython – http://www.biopython.org
– BioRuby – http://www.bioruby.org/

• Projects contain code for representing sequences, parsing biological file
formats, running bioinformatics programs and tons more

11

http://www.bioperl.org
http://www.biopython.org
http://www.bioruby.org/

More Resources for Scripting Languages

• Most scripting languages come out of the open-source community

• Community built up around them that is encouraged to give away their
code

• Can easily find code other people have written that may be useful to
you:

Perl Comprehensive Perl Archive Network – http://www.cpan.org/
Python Vaults of Parnassus – http://www.vex.net/parnassus/
Ruby Ruby Application Archive – http://www.ruby-lang.org/raa/

• In many cases you can find code to solve your problem or close to your
problem without having to start from scratch

12

http://www.cpan.org/
http://www.vex.net/parnassus/
http://www.ruby-lang.org/raa/

Solving problems

• The ultimate advantage of scripting languages is that they let you solve
your problems faster

• Most of my problems in biology are not huge programs to write, but
small tasks that need to get finished.

– Retrieve information from a web page
– Parse a ton of BLAST outputs
– Rewrite files into different phylogenetic formats
– Generate files for GenBank submission
– Retrieve information from ABI trace files

13

Example: batch primer design

• Simplified from a real example where we needed to generate primers for
several hundred sequences

• Our goals:

– Start with a file full of sequences
– Design primers for each sequence with specific criterion (have to span

a central region)
– Write the files to a format that can be loaded into Excel

• Accomplished in python with the help of the Biopython libraries

14

Our starting sequences

• Begin with files in Fasta format, a standard sequence format

>CL031541.94_2268.amyltp
CGCGGCCGCSGACCTYGCCGCAGCCTCCCCTTCMATCCTCCTCCCGCTCC
TCCTACGCGACGCCGGTGACCGTGATGAGGCCGTCGCCGCYTCCGCGCTC
CCTCAAGGCNNN
NN
AAGTGCCTTGGCTTCACGCTCTACCATCCGGTCCTCGTCTCCACCGTCTC
AGGTAGAATGGCTCCCCTGTATCCACAACTCGTCAGTGAAATGTGCAGTT

• Biopython has a module (Bio.Fasta) which can read these Fasta
formatted files.

15

Our primer design program

• Primer3, from the Whitehead Institute – http://www-genome.wi.mit.
edu/genome_software/other/primer3.html

• EMBOSS, a free set of bioinformatics programs, has an interface
(eprimer3) to make the program easier to use – http://www.emboss.
org

• Biopython has code to work with eprimer3

– Primer3Commandline – run the program
– Primer3Parser – parse the output from the program

16

http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www.emboss.org
http://www.emboss.org

Program Step 1 – read the Fasta File

Load the biopython module that deals with Fasta

from Bio import Fasta

Open the Fasta file from python

open_fasta = open(fasta_file, "r")

Initialize an Iterator that lets us step through the file

parser = Fasta.RecordParser()
iterator = Fasta.Iterator(open_fasta, parser)

17

Program Step 2 – Read through the file

We want to go through the file one record at a time.

Generate a loop and use the iterator to get the next record.

We stop if we reach the end of the file (get a record that is None).

while 1:
cur_record = iterator.next()
if not(cur_record):

break

18

Program Step 3 – Set up the primer3 program

We want to create a run of the primer3 program with our parameters

from Bio.Emboss.Applications import Primer3Commandline

primer_cl = Primer3Commandline()
primer_cl.set_parameter("-sequence", "in.pr3")
primer_cl.set_parameter("-outfile", "out.pr3")
primer_cl.set_parameter("-productsizerange", "350,10000")
primer_cl.set_parameter("-target", "%s,%s" % (start, end))

start and end are the middle region we want to design primers around

19

Program Step 4 – Run the primer3 program

Biopython has a single way to run a program and get the output.

Python interacts readily with the operating system,
making it easy to run other programs from it.

from Bio.Application import generic_run

result, messages, errors = generic_run(primer_cl)

20

The Primer3 output file

Primer3 generates an output file that looks like:

PRIMER3 RESULTS FOR CLB11512.1_789.buhui

Start Len Tm GC% Sequence

1 PRODUCT SIZE: 227
FORWARD PRIMER 728 20 59.91 50.00 TTCACCTACTGCAAACGCAC

REVERSE PRIMER 935 20 59.57 50.00 TTGGTACGTTGTCCATCTCG

A ton of these files are not easy to deal with.

21

Program Step 5 – parse the output file

We use the Biopython parser to parse these files.

open_outfile = open("out.pr3", "r")

from Bio.Emboss.Primer import Primer3Parser

parser = Primer3Parser()
primer_record = parser.parse(open_outfile)

The result is that we get the information into a python ready
format that we can readily output.

22

Program Step 6 – Write the output

We want to write the output to an Excel ready format

We write the forward and reverse sequences along with
the sequence name to a comma separated value file.

open_excelfile = open(excel_file, "w")

primer = primer_record.primers[0]

open_excelfile.write("%s,%s,%s" % (
sequence_name, primer.forward_seq, primer.reverse_seq))

The result is a file full of primers that you can then deal with.

23

Conclusions from all of this

• Scripting languages can be used to automate repetitive tasks (designing
500 primers)

• Scripting languages readily interact with the things biologists need to do
(parse files, run programs)

• Scripting languages allow you to tackle the problem in small simpler
steps (parse a file, run a program, write a file)

• Scripting languages aren’t too hard to learn (see that code was easy)

• You should run right out and learn a scripting language

24

