Useftul Scripting for Biologists

Brad Chapman

23 Jan 2003

Objectives

e Explain what scripting languages are

e Describe some of the things you can do with a scripting language
e Show some tools to use once you pick a language

e Show an example of how I've used scripting languages

e Overall, convince you it's worthwhile to learn to program in a scripting
language

Who am 1?

Biologist — all of my background is in lab work
Took two programming classes as an undergrad (C++)
Needed programming for my work when | came to UGa

Taught myself to program in the scripting language python

What is a scripting language?

In Computer Science terms

Dynamically typed (do not have to declare variables)
Are not compiled

In Practical Terms

Faster to learn to program in

Easier to debug and fix problems

Programs run slower, however, because of the niceties

Examples of scripting languages

Perl — http://www.perl.com

Python — http://www.python.org

Tcl —http://tcl.sourceforge.net/
Ruby — http://www.ruby-lang.org/en/
"Web" languages — JavaScript, PHP

Others — Lisp, Scheme, Ocaml|

http://www.perl.com
http://www.python.org
http://tcl.sourceforge.net/
http://www.ruby-lang.org/en/

Some things scripting languages make easier

Dealing with text files e Retrieving information from
Databases
Interacting with the web
e Reorganizing data (ie. into a
|\/|aking graphical user interfaces Spreadsheet ready format)

Creating dynamic web pages e Generating figures

Tieing together multiple programs _ N _
e Automating repetitive daily tasks

Parsing information from files or
web pages e Writing one-time programs

Other Practical Advantages of Scripting Languages

All those mentioned are freely available and most have very non-restrictive
licenses

Lots of free documentation on the web for learning how to program in
the language

— Python — http://www.python.org/doc/current/tut/tut.html
— Ruby — http://www.rubycentral.com/book/

Really relieves your frustration level in programming compared to
compiled languages like C++

Programs can often be written quicker because you don't have to worry
about compiling woes, variable declaration and so on

http://www.python.org/doc/current/tut/tut.html
http://www.rubycentral.com/book/

How do you choose a scripting language?

Want to pick something easy to learn and get started with
Make a list of some things you want to do with the language and look
for languages that have ready made packages for what you'd like to do

— Python — Interact with Excel on a Windows computer: Python
Windows Extensions

— Perl — Create charts for display on the web: GDGraph

— Tcl — write a graphical user interface : Tk

Looking at the code in different languages to see what appeals to you

Try them out

Perl code

$nBottles = $ARGV[O];
$nBottles = 100 if $nBottles eq ’’ || $nBottles < 0;

foreach (reverse(l .. $nBottles)) {
$s = ($_ == 1) 7 "" : "s";
$onelessS = ($_ == 2) 7 "nv . ngh:
print "\n$_ bottle$s of beer on the wall,\n";
print "$_ bottle$s of beer,\n";
print "Take one down, pass it around,\n";
print $_ - 1, " bottle$onelLessS of beer on the wall\n";
+

print "\n*burp*\n";

Python code

def bottle(n):
try:
return { O0: "no more bottles",
1: "1 bottle"} [n] + " of beer"
except KeyError: return "J)d bottles of beer" % n

for i in range(99, 0, -1):
bl, b0 = bottle(i), bottle(i-1)
print "%(bl)s on the wall, %(bl)s,\n"\
"take one down, pass it around,\n"\
"%(0)s on the wall." % locals()

Tcl code

proc bottles {i} {
return "$i bottlel[expr $i!=17"s":""] of beer"

by

proc 1line123 {i} {
puts "[bottles $i] on the wall,"
puts "[bottles $i],"
puts "take one down, pass it around,"

proc lined4 {i} {
puts "[bottles $i] on the wall.\n"

}

for {set i 99} {$i>0} {} {
line123 $i
incr i -1
lined4 $i

10

Biological Tools for Scripting Languages

e Because the advantages of scripting languages help ease a lot of biological
problems (ie. file parsing) there are good resources for code for scripting

language

e Open-Bio set of projects

— BioPerl — http://www.bioperl.org
— Biopython — http://www.biopython.org
— BioRuby — http://www.bioruby.org/

e Projects contain code for representing sequences, parsing biological file

formats, running bioinformatics programs and tons more

11

http://www.bioperl.org
http://www.biopython.org
http://www.bioruby.org/

More Resources for Scripting Languages

Most scripting languages come out of the open-source community

Community built up around them that is encouraged to give away their
code

Can easily find code other people have written that may be useful to
you:

Perl Comprehensive Perl Archive Network — http://www.cpan.org/
Python Vaults of Parnassus — http://www.vex.net/parnassus/
Ruby Ruby Application Archive — http://www.ruby-lang.org/raa/

In many cases you can find code to solve your problem or close to your
problem without having to start from scratch

12

http://www.cpan.org/
http://www.vex.net/parnassus/
http://www.ruby-lang.org/raa/

Solving problems

e The ultimate advantage of scripting languages is that they let you solve

your problems faster

e Most of my problems in biology are not huge programs to write, but

small tasks that need to get finished.

— Retrieve information from a web page

— Parse a ton of BLAST outputs

— Rewrite files into different phylogenetic formats
— Generate files for GenBank submission

— Retrieve information from ABI trace files

13

Example: batch primer design

e Simplified from a real example where we needed to generate primers for

several hundred sequences

e Our goals:

— Start with a file full of sequences

— Design primers for each sequence with specific criterion (have to span

a central region)
— Write the files to a format that can be loaded into Excel

e Accomplished in python with the help of the Biopython libraries

14

Our starting sequences

e Begin with files in Fasta format, a standard sequence format

>CL031541.94_2268.amyltp

CGCGGCCGCSGACCTYGCCGCAGCCTCCCCTTCMATCCTCCTCCCGCTCC
TCCTACGCGACGCCGGTGACCGTGATGAGGCCGTCGCCGCYTCCGCGCTC
CCTCAAGGCNNN
NN
AAGTGCCTTGGCTTCACGCTCTACCATCCGGTCCTCGTCTCCACCGTCTC
AGGTAGAATGGCTCCCCTGTATCCACAACTCGTCAGTGAAATGTGCAGTT

e Biopython has a module (Bio.Fasta) which can read these Fasta
formatted files.

15

Our primer design program

e Primer3, from the Whitehead Institute — http://www-genome.wi.mit.

edu/genome_software/other/primer3.html

e EMBOSS, a free set of bioinformatics programs, has an interface
(eprimer3) to make the program easier to use — http://www.emboss.

org

e Biopython has code to work with eprimer3

— Primer3Commandline — run the program
— Primer3Parser — parse the output from the program

16

http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www.emboss.org
http://www.emboss.org

Program Step 1 — read the Fasta File

Load the biopython module that deals with Fasta
from Bio import Fasta

Open the Fasta file from python
open_fasta = open(fasta_file, "r")

Initialize an lterator that lets us step through the file

parser = Fasta.RecordParser()
iterator = Fasta.Iterator(open_fasta, parser)

17

Program Step 2 — Read through the file

We want to go through the file one record at a time.

Generate a loop and use the iterator to get the next record.

We stop if we reach the end of the file (get a record that is None).

while 1:
cur_record = iterator.next()

if not(cur_record):
break

18

Program Step 3 — Set up the primer3 program

We want to create a run of the primer3 program with our parameters

from Bio.Emboss.Applications import Primer3Commandline

primer_cl = Primer3Commandline ()

primer_cl.set_parameter("-sequence", "in.pr3")
primer_cl.set_parameter("-outfile", "out.pr3")
primer_cl.set_parameter ("-productsizerange", "350,10000")
primer_cl.set_parameter("-target", "%s,%s" % (start, end))

start and end are the middle region we want to design primers around

19

Program Step 4 — Run the primer3 program

Biopython has a single way to run a program and get the output.

Python interacts readily with the operating system,
making it easy to run other programs from it.

from Bio.Application import generic_run

result, messages, errors = generic_run(primer_cl)

20

The Primer3 output file

Primer3 generates an output file that looks like:

PRIMER3 RESULTS FOR CLB11512.1_789.buhui
Start Len Tm GC/, Sequence

1 PRODUCT SIZE: 227
FORWARD PRIMER 728 20 59.91 ©50.00 TTCACCTACTGCAAACGCAC

REVERSE PRIMER 935 20 59.57 50.00 TTGGTACGTTGTCCATCTCG

A ton of these files are not easy to deal with.

21

Program Step b — parse the output file

We use the Biopython parser to parse these files.

open_outfile = open("out.pr3", "r")
from Bio.Emboss.Primer import Primer3Parser

parser = Primer3Parser ()
primer_record = parser.parse(open_outfile)

The result is that we get the information into a python ready
format that we can readily output.

22

Program Step 6 — Write the output

We want to write the output to an Excel ready format

We write the forward and reverse sequences along with
the sequence name to a comma separated value file.

open_excelfile = open(excel_file, "w")
primer = primer_record.primers[0]

open_excelfile.write("%s,%s,%s" % (
sequence_name, primer.forward_seq, primer.reverse_seq))

The result is a file full of primers that you can then deal with.

23

Conclusions from all of this

Scripting languages can be used to automate repetitive tasks (designing

500 primers)

Scripting languages readily interact with the things biologists need to do

(parse files, run programs)

Scripting languages allow you to tackle the problem in small simpler

steps (parse a file, run a program, write a file)
Scripting languages aren't too hard to learn (see that code was easy)

You should run right out and learn a scripting language

24

