
Biopython project update
(and the Python ecology for bioinformatics)

Tiago Antão1 and Peter Cock2,3

1 - Liverpool School Of Tropical Medicine, UK
2 - SCRI, Dundee, UK

3 - MOAC Doctoral Training Centre, University of Warwick, UK

Credits and caveats

  Open Bioinformatics Foundation or O|B|F for web
hosting, CVS servers, mailing list

  Biopython developers, including:
Jeff Chang, Andrew Dalke, Brad Chapman, Iddo
Friedberg, Michiel de Hoon, Frank Kauff, Cymon Cox,
Thomas Hamelryck, Peter Cock

  Contributors who report bugs & join in the mailing list
discussions

  Caveat: Person in front of you minor author (new
population genetics module)

Overview

  Python
  Biopython
  The Python ecology for bioinformatics

-  Matplotlib
-  NumPy and SciPy
-  Jython/IronPython
-  ...Python as a complete solution for computational

biology research

Python

  High-level, OO, free software (the usual
goodies)

  Cultural traits of the Python community (applies
to both the core language and many Python
projects) – The Python ethos
-  Smooth learning curve – powerful yet tamable by

new users
-  Focus on readability, maintainability
-  Good documentation
-  Examples will follow

Biopython
Available features

  Read, write & manipulate sequences
  Restriction enzymes
  BLAST (local and online)
  Web databases (e.g. NCBI’s EUtils)
  Call command line tools (e.g. clustalw)
  Clustering (Bio.Cluster)
  Phylogenetics (Bio.Nexus)
  Protein Structures (Bio.PDB)
  BioSQL support
  Population genetics (Bio.PopGen) – New module

Bio.Entrez
Examples

  Searching the
taxonomy database

  Fetch the species
lineage

> from Bio import Entrez	
> handle = Entrez.esearch(
 db="Taxonomy",	
 term="Nanoarchaeum equitans")	
> record = Entrez.read(handle)	
 #parse XML	
> record["IdList"]	
['158330']	

> handle = Entrez.efetch(
 db="Taxonomy",	
 id="158330",	
 retmode='xml')	
> records = Entrez.read(handle) 	
> records[0]['Lineage']	
'cellular organisms; Archaea;	
Nanoarchaeota; Nanoarchaeum'	

 Entrez interface supports all the API functions
 Will convert the XML output to typical Python structures

Bio.AlignIO

  File format agnostic
  Reads and writes: PFAM/Stockholm, Clustal,

PHYLIP (strict), and FASTA
  Also reads several formats including Nexus

> from Bio import AlignIO	
> alignment = AlignIO.read(open("PF09395_seed.sth"),"stockholm")	
> print alignment	
SingleLetterAlphabet() alignment with 14 rows and 77 columns	
GFGTYCPTTCGVADYLQRYKPDMDKKLDDMEQDLEEIANLTRGA...NML Q7ZVG7_BRARE/37-110	
...	
RFGSYCPTTCGIADFLSTYQTXVDKDLQVLEDILNQAENKTSEA...KML O02689_TAPIN/1-77	
RFGSYCPTMCGIAGFLSTYQNTVEKDLQNLEGILHQVENKTSEA...KML O02688_PIG/1-77	
RFGSYCPTTCGVADFLSNYQTSVDKDLQNLEGILYQVENKTSEA...RMM O02672_9CETA/1-77	
RFGSYCPTTCGIADFLSNYQTSVDKDLQDFEDILHRAENQTSEA...KMM O02682_EQUPR/1-77	

Bio.PopGen

  Philosophy: Don't reinvent the wheel if there are
good alternatives around

  Mainly a (smart) wrapper for existing
applications
-  SimCoal2 for coalescent, Fdist for selection

detection
-  LDNe (Ne estimation) coming soon

  Supports GenePop file format (standard in the
“industry”)

  Multi-core aware! Even includes a naïve task
scheduler

Bio.PopGen
Future and Alternatives

  PopGen Statistics (Fst, LD, EHH, Tajima D,
HWE, ...) - Stalled for now, still not clear how to
handle statistics (using SciPy or replicate code
to avoid adding another dependency)

  Other Python solutions for population genetics
-  SimuPOP for individual based simulation
-  PyPop for some statistics
-  Bio.PopGen + PyPop + SimuPOP = Python's

solution to (most) population genetics problems

Jython and IronPython
Interacting with your favourite VM

  Biopython can be partially used inside JVM and
.NET environments

  Only parts of Biopython available (functionality
that links to C code will not work)

  On JVM, BioJava might be a better option...
  Most applications done with Bio.PopGen are

actually JavaWebStart Applications

Biopython on Java

  Example applications from Bio.PopGen

Coalescent simulation Molecular adaptation detection
using a Fst-outlier approach

Biopython
Wrapping up

  Contributions welcomed
-  Code, documentation, bug reporting

  Suggestions welcomed
-  What functionality would you like to see?

  Short term goals
-  Moving to Subversion
-  Supporting more file formats in Bio.SeqIO and

Bio.AlignIO
-  Numeric to numpy migration
-  Make Sequence objects more string like and OO

Matplotlib
Easy and powerful charting

  Easy to use
  Documentation, including cookbooks
  Sensible defaults
  Powerful visualization aides

Matplotlib
GC-percentage example

  Zoom, save built-in on
show

  Straightforward code
(judge for yourself, all
code is left)

from Bio import SeqIO	
from Bio.SeqUtils import GC	
from pylab import *	

data = [GC(rec.seq) for rec in	
 SeqIO.parse(open("NC_005213.ffn"),	
 "fasta")]	

data.sort()	

plot(data)	
xlim([0,len(data)])	
xlabel("Genes")	
ylabel("GC%")	
savefig("gc_plot.png")	
show()	

Matplotlib - 3D

  User controlled 3D
interface included
(zoom, rotation, ...)

  Full code shown
above the image

  3D undergoing
changes in matplotlib

u=r_[0:2*pi:100j]	
v=r_[0:pi:100j]	
x=10*outer(cos(u),sin(v))	
y=10*outer(sin(u),sin(v))	
z=10*outer(ones(size(u)),cos(v))	
fig=p.figure()	
ax = p3.Axes3D(fig)	
ax.contour3D(x,y,z)	
ax.set_xlabel('X')	
ax.set_ylabel('Y')	
ax.set_zlabel('Z')	
fig.add_axes(ax)	
p.show()	

NumPy and SciPy

  N-dimensional arrays
  Basic linear algebra

functions
  Basic Fourier

transforms
  Sophisticated random

number capabilities

  Statistics
  Optimization
  Numerical integration
  Linear algebra
  Fourier transforms
  Signal processing
  Image processing
  Genetic algorithms
  ODE solvers

Other applications and libraries
  SWIG – C/C++ interaction

  Zope, Django and many other web frameworks

  Plone – Content Management

  ReportLab – PDF generation (used in Biopython)

  MPI for Python – Parallel programming

  SymPy – Symbolic Mathematics

  Python/R interface (e.g. microarrays)

  Pygr – Graph database interfaces with emphasis on
bioinformatics

  PysCeS – Simulation of cellular systems

  SloppyCell – Simulation and analysis of biomolecular networks

  ...

Questions?

