
Biopython project update
(and the Python ecology for bioinformatics)‏

Tiago Antão1 and Peter Cock2,3

1 - Liverpool School Of Tropical Medicine, UK
2 - SCRI, Dundee, UK

3 - MOAC Doctoral Training Centre, University of Warwick, UK

Credits and caveats

  Open Bioinformatics Foundation or O|B|F for web
hosting, CVS servers, mailing list

  Biopython developers, including:
Jeff Chang, Andrew Dalke, Brad Chapman, Iddo
Friedberg, Michiel de Hoon, Frank Kauff, Cymon Cox,
Thomas Hamelryck, Peter Cock

  Contributors who report bugs & join in the mailing list
discussions

  Caveat: Person in front of you minor author (new
population genetics module)‏

Overview

  Python
  Biopython
  The Python ecology for bioinformatics

-  Matplotlib
-  NumPy and SciPy
-  Jython/IronPython
-  ...Python as a complete solution for computational

biology research

Python

  High-level, OO, free software (the usual
goodies)‏

  Cultural traits of the Python community (applies
to both the core language and many Python
projects) – The Python ethos
-  Smooth learning curve – powerful yet tamable by

new users
-  Focus on readability, maintainability
-  Good documentation
-  Examples will follow

Biopython
Available features

  Read, write & manipulate sequences
  Restriction enzymes
  BLAST (local and online)‏
  Web databases (e.g. NCBI’s EUtils)‏
  Call command line tools (e.g. clustalw)‏
  Clustering (Bio.Cluster)‏
  Phylogenetics (Bio.Nexus)‏
  Protein Structures (Bio.PDB)‏
  BioSQL support
  Population genetics (Bio.PopGen) – New module

Bio.Entrez
Examples

  Searching the
taxonomy database

  Fetch the species
lineage

> from Bio import Entrez	
> handle = Entrez.esearch(
 db="Taxonomy",	
 term="Nanoarchaeum equitans")‏	
> record = Entrez.read(handle)	
 #parse XML	
> record["IdList"]	
['158330']	

> handle = Entrez.efetch(
 db="Taxonomy",	
 id="158330",	
 retmode='xml')‏	
> records = Entrez.read(handle) 	
> records[0]['Lineage']	
'cellular organisms; Archaea;	
Nanoarchaeota; Nanoarchaeum'	

 Entrez interface supports all the API functions
 Will convert the XML output to typical Python structures

Bio.AlignIO

  File format agnostic
  Reads and writes: PFAM/Stockholm, Clustal,

PHYLIP (strict), and FASTA
  Also reads several formats including Nexus

> from Bio import AlignIO	
> alignment = AlignIO.read(open("PF09395_seed.sth"),"stockholm")‏	
> print alignment	
SingleLetterAlphabet() alignment with 14 rows and 77 columns	
GFGTYCPTTCGVADYLQRYKPDMDKKLDDMEQDLEEIANLTRGA...NML Q7ZVG7_BRARE/37-110	
...	
RFGSYCPTTCGIADFLSTYQTXVDKDLQVLEDILNQAENKTSEA...KML O02689_TAPIN/1-77	
RFGSYCPTMCGIAGFLSTYQNTVEKDLQNLEGILHQVENKTSEA...KML O02688_PIG/1-77	
RFGSYCPTTCGVADFLSNYQTSVDKDLQNLEGILYQVENKTSEA...RMM O02672_9CETA/1-77	
RFGSYCPTTCGIADFLSNYQTSVDKDLQDFEDILHRAENQTSEA...KMM O02682_EQUPR/1-77	

Bio.PopGen

  Philosophy: Don't reinvent the wheel if there are
good alternatives around

  Mainly a (smart) wrapper for existing
applications
-  SimCoal2 for coalescent, Fdist for selection

detection
-  LDNe (Ne estimation) coming soon

  Supports GenePop file format (standard in the
“industry”)‏

  Multi-core aware! Even includes a naïve task
scheduler

Bio.PopGen
Future and Alternatives

  PopGen Statistics (Fst, LD, EHH, Tajima D,
HWE, ...) - Stalled for now, still not clear how to
handle statistics (using SciPy or replicate code
to avoid adding another dependency)‏

  Other Python solutions for population genetics
-  SimuPOP for individual based simulation
-  PyPop for some statistics
-  Bio.PopGen + PyPop + SimuPOP = Python's

solution to (most) population genetics problems

Jython and IronPython
Interacting with your favourite VM

  Biopython can be partially used inside JVM and
.NET environments

  Only parts of Biopython available (functionality
that links to C code will not work)‏

  On JVM, BioJava might be a better option...
  Most applications done with Bio.PopGen are

actually JavaWebStart Applications

Biopython on Java

  Example applications from Bio.PopGen

Coalescent simulation Molecular adaptation detection
using a Fst-outlier approach

Biopython
Wrapping up

  Contributions welcomed
-  Code, documentation, bug reporting

  Suggestions welcomed
-  What functionality would you like to see?

  Short term goals
-  Moving to Subversion
-  Supporting more file formats in Bio.SeqIO and

Bio.AlignIO
-  Numeric to numpy migration
-  Make Sequence objects more string like and OO

Matplotlib
Easy and powerful charting

  Easy to use
  Documentation, including cookbooks
  Sensible defaults
  Powerful visualization aides

Matplotlib
GC-percentage example

  Zoom, save built-in on
show

  Straightforward code
(judge for yourself, all
code is left)‏

from Bio import SeqIO	
from Bio.SeqUtils import GC	
from pylab import *	

data = [GC(rec.seq) for rec in	
 SeqIO.parse(open("NC_005213.ffn"),	
 "fasta")‏]	

data.sort()‏	

plot(data)‏	
xlim([0,len(data)])‏	
xlabel("Genes")‏	
ylabel("GC%")‏	
savefig("gc_plot.png")‏	
show()‏	

Matplotlib - 3D

  User controlled 3D
interface included
(zoom, rotation, ...)‏

  Full code shown
above the image

  3D undergoing
changes in matplotlib

u=r_[0:2*pi:100j]	
v=r_[0:pi:100j]	
x=10*outer(cos(u),sin(v))‏	
y=10*outer(sin(u),sin(v))‏	
z=10*outer(ones(size(u)),cos(v))‏	
fig=p.figure()‏	
ax = p3.Axes3D(fig)‏	
ax.contour3D(x,y,z)‏	
ax.set_xlabel('X')‏	
ax.set_ylabel('Y')‏	
ax.set_zlabel('Z')‏	
fig.add_axes(ax)‏	
p.show()‏	

NumPy and SciPy

  N-dimensional arrays
  Basic linear algebra

functions
  Basic Fourier

transforms
  Sophisticated random

number capabilities

  Statistics
  Optimization
  Numerical integration
  Linear algebra
  Fourier transforms
  Signal processing
  Image processing
  Genetic algorithms
  ODE solvers

Other applications and libraries
  SWIG – C/C++ interaction

  Zope, Django and many other web frameworks

  Plone – Content Management

  ReportLab – PDF generation (used in Biopython)

  MPI for Python – Parallel programming

  SymPy – Symbolic Mathematics

  Python/R interface (e.g. microarrays)

  Pygr – Graph database interfaces with emphasis on
bioinformatics

  PysCeS – Simulation of cellular systems

  SloppyCell – Simulation and analysis of biomolecular networks

  ...

Questions?

