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16.3 Näıve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
16.4 Maximum Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
16.5 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

17 Graphics including GenomeDiagram 276
17.1 GenomeDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

17.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
17.1.2 Diagrams, tracks, feature-sets and features . . . . . . . . . . . . . . . . . . . . . . . . 276
17.1.3 A top down example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
17.1.4 A bottom up example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
17.1.5 Features without a SeqFeature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
17.1.6 Feature captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
17.1.7 Feature sigils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
17.1.8 Arrow sigils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
17.1.9 A nice example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
17.1.10 Multiple tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
17.1.11 Cross-Links between tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
17.1.12 Further options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
17.1.13 Converting old code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

17.2 Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
17.2.1 Simple Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
17.2.2 Annotated Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

18 KEGG 302
18.1 Parsing KEGG records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
18.2 Querying the KEGG API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

19 Bio.phenotype: analyse phenotypic data 305
19.1 Phenotype Microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

19.1.1 Parsing Phenotype Microarray data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
19.1.2 Manipulating Phenotype Microarray data . . . . . . . . . . . . . . . . . . . . . . . . . 306
19.1.3 Writing Phenotype Microarray data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

6



20 Cookbook – Cool things to do with it 310
20.1 Working with sequence files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

20.1.1 Filtering a sequence file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
20.1.2 Producing randomised genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
20.1.3 Translating a FASTA file of CDS entries . . . . . . . . . . . . . . . . . . . . . . . . . . 313
20.1.4 Making the sequences in a FASTA file upper case . . . . . . . . . . . . . . . . . . . . . 313
20.1.5 Sorting a sequence file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
20.1.6 Simple quality filtering for FASTQ files . . . . . . . . . . . . . . . . . . . . . . . . . . 315
20.1.7 Trimming off primer sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
20.1.8 Trimming off adaptor sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
20.1.9 Converting FASTQ files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
20.1.10 Converting FASTA and QUAL files into FASTQ files . . . . . . . . . . . . . . . . . . . 320
20.1.11 Indexing a FASTQ file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
20.1.12 Converting SFF files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
20.1.13 Identifying open reading frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

20.2 Sequence parsing plus simple plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
20.2.1 Histogram of sequence lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
20.2.2 Plot of sequence GC% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
20.2.3 Nucleotide dot plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
20.2.4 Plotting the quality scores of sequencing read data . . . . . . . . . . . . . . . . . . . . 330

20.3 Dealing with alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
20.3.1 Calculating summary information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
20.3.2 Calculating a quick consensus sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 332
20.3.3 Position Specific Score Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
20.3.4 Information Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

20.4 Substitution Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
20.4.1 Using common substitution matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
20.4.2 Creating your own substitution matrix from an alignment . . . . . . . . . . . . . . . . 336

20.5 BioSQL – storing sequences in a relational database . . . . . . . . . . . . . . . . . . . . . . . 337

21 The Biopython testing framework 338
21.1 Running the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

21.1.1 Running the tests using Tox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
21.2 Writing tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

21.2.1 Writing a test using unittest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
21.3 Writing doctests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
21.4 Writing doctests in the Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

22 Advanced 345
22.1 Parser Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
22.2 Substitution Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

22.2.1 SubsMat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
22.2.2 FreqTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

23 Where to go from here – contributing to Biopython 349
23.1 Bug Reports + Feature Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
23.2 Mailing lists and helping newcomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
23.3 Contributing Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
23.4 Contributing cookbook examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
23.5 Maintaining a distribution for a platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
23.6 Contributing Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
23.7 Contributing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

7



24 Appendix: Useful stuff about Python 352
24.1 What the heck is a handle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

24.1.1 Creating a handle from a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8



Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (https:
//www.python.org) tools for computational molecular biology. Python is an object oriented, interpreted,
flexible language that is becoming increasingly popular for scientific computing. Python is easy to learn, has
a very clear syntax and can easily be extended with modules written in C, C++ or FORTRAN.

The Biopython web site (http://www.biopython.org) provides an online resource for modules, scripts,
and web links for developers of Python-based software for bioinformatics use and research. Basically, the
goal of Biopython is to make it as easy as possible to use Python for bioinformatics by creating high-quality,
reusable modules and classes. Biopython features include parsers for various Bioinformatics file formats
(BLAST, Clustalw, FASTA, Genbank,...), access to online services (NCBI, Expasy,...), interfaces to common
and not-so-common programs (Clustalw, DSSP, MSMS...), a standard sequence class, various clustering
modules, a KD tree data structure etc. and even documentation.

Basically, we just like to program in Python and want to make it as easy as possible to use Python for
bioinformatics by creating high-quality, reusable modules and scripts.

1.2 What can I find in the Biopython package

The main Biopython releases have lots of functionality, including:

• The ability to parse bioinformatics files into Python utilizable data structures, including support for
the following formats:

– Blast output – both from standalone and WWW Blast

– Clustalw

– FASTA

– GenBank

– PubMed and Medline

– ExPASy files, like Enzyme and Prosite

– SCOP, including ‘dom’ and ‘lin’ files

– UniGene

– SwissProt

• Files in the supported formats can be iterated over record by record or indexed and accessed via a
Dictionary interface.
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• Code to deal with popular on-line bioinformatics destinations such as:

– NCBI – Blast, Entrez and PubMed services

– ExPASy – Swiss-Prot and Prosite entries, as well as Prosite searches

• Interfaces to common bioinformatics programs such as:

– Standalone Blast from NCBI

– Clustalw alignment program

– EMBOSS command line tools

• A standard sequence class that deals with sequences, ids on sequences, and sequence features.

• Tools for performing common operations on sequences, such as translation, transcription and weight
calculations.

• Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector
Machines.

• Code for dealing with alignments, including a standard way to create and deal with substitution
matrices.

• Code making it easy to split up parallelizable tasks into separate processes.

• GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.

• Extensive documentation and help with using the modules, including this file, on-line wiki documen-
tation, the web site, and the mailing list.

• Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava
projects.

We hope this gives you plenty of reasons to download and start using Biopython!

1.3 Installing Biopython

All of the installation information for Biopython was separated from this document to make it easier to keep
updated.

The short version is use pip install biopython, see the main README file for other options.

1.4 Frequently Asked Questions (FAQ)

1. How do I cite Biopython in a scientific publication?
Please cite our application note [1, Cock et al., 2009] as the main Biopython reference. In addition,
please cite any publications from the following list if appropriate, in particular as a reference for specific
modules within Biopython (more information can be found on our website):

• For the official project announcement: [13, Chapman and Chang, 2000];

• For Bio.PDB: [20, Hamelryck and Manderick, 2003];

• For Bio.Cluster: [15, De Hoon et al., 2004];

• For Bio.Graphics.GenomeDiagram: [2, Pritchard et al., 2006];

• For Bio.Phylo and Bio.Phylo.PAML: [9, Talevich et al., 2012];
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• For the FASTQ file format as supported in Biopython, BioPerl, BioRuby, BioJava, and EMBOSS:
[7, Cock et al., 2010].

2. How should I capitalize “Biopython”? Is “BioPython” OK?
The correct capitalization is “Biopython”, not “BioPython” (even though that would have matched
BioPerl, BioJava and BioRuby).

3. How is the Biopython software licensed?
Biopython is distributed under the Biopython License Agreement. However, since the release of Biopy-
thon 1.69, some files are explicitly dual licensed under your choice of the Biopython License Agreement
or the BSD 3-Clause License. This is with the intention of later offering all of Biopython under this
dual licensing approach.

4. What is the Biopython logo and how is it licensed?
As of July 2017 and the Biopython 1.70 release, the Biopython logo is a yellow and blue snake forming
a double helix above the word “biopython” in lower case. It was designed by Patrick Kunzmann and
this logo is dual licensed under your choice of the Biopython License Agreement or the BSD 3-Clause
License.

Prior to this, the Biopython logo was two yellow snakes forming a double helix around the word
“BIOPYTHON”, designed by Henrik Vestergaard and Thomas Hamelryck in 2003 as part of an open
competition.

5. Do you have a change-log listing what’s new in each release?
See the file NEWS.rst included with the source code (originally called just NEWS), or read the latest
NEWS file on GitHub.

6. What is going wrong with my print commands?
This tutorial now uses the Python 3 style print function. As of Biopython 1.62, we support both
Python 2 and Python 3. The most obvious language difference is the print statement in Python 2
became a print function in Python 3.

For example, this will only work under Python 2:

>>> print "Hello World!"

Hello World!

If you try that on Python 3 you’ll get a SyntaxError. Under Python 3 you must write:
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>>> print("Hello World!")

Hello World!

Surprisingly that will also work on Python 2 – but only for simple examples printing one thing. In
general you need to add this magic line to the start of your Python scripts to use the print function
under Python 2.6 and 2.7:

from __future__ import print_function

If you forget to add this magic import, under Python 2 you’ll see extra brackets produced by trying
to use the print function when Python 2 is interpreting it as a print statement and a tuple.

7. How do I find out what version of Biopython I have installed?
Use this:

>>> import Bio

>>> print(Bio.__version__)

...

If the “import Bio” line fails, Biopython is not installed. Note that those are double underscores
before and after version. If the second line fails, your version is very out of date.

If the version string ends with a plus like “1.66+”, you don’t have an official release, but an old snapshot
of the in development code after that version was released. This naming was used until June 2016 in
the run-up to Biopython 1.68.

If the version string ends with “.dev<number>” like “1.68.dev0”, again you don’t have an official
release, but instead a snapshot of the in developement code before that version was released.

8. Where is the latest version of this document?
If you download a Biopython source code archive, it will include the relevant version in both HTML
and PDF formats. The latest published version of this document (updated at each release) is online:

• http://biopython.org/DIST/docs/tutorial/Tutorial.html

• http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

9. What is wrong with my sequence comparisons?
There was a major change in Biopython 1.65 making the Seq and MutableSeq classes (and subclasses)
use simple string-based comparison (ignoring the alphabet other than if giving a warning), which you
can do explicitly with str(seq1) == str(seq2).

Older versions of Biopython would use instance-based comparison for Seq objects which you can do
explicitly with id(seq1) == id(seq2).

If you still need to support old versions of Biopython, use these explicit forms to avoid problems. See
Section 3.11.

10. Why is the Seq object missing the upper & lower methods described in this Tutorial?
You need Biopython 1.53 or later. Alternatively, use str(my_seq).upper() to get an upper case
string. If you need a Seq object, try Seq(str(my_seq).upper()) but be careful about blindly re-using
the same alphabet.

11. What file formats do Bio.SeqIO and Bio.AlignIO read and write?
Check the built in docstrings (from Bio import SeqIO, then help(SeqIO)), or see http://biopython.
org/wiki/SeqIO and http://biopython.org/wiki/AlignIO on the wiki for the latest listing.
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12. Why won’t the Bio.SeqIO and Bio.AlignIO functions parse, read and write take filenames? They
insist on handles!
You need Biopython 1.54 or later, or just use handles explicitly (see Section 24.1). It is especially
important to remember to close output handles explicitly after writing your data.

13. Why won’t the Bio.SeqIO.write() and Bio.AlignIO.write() functions accept a single record or
alignment? They insist on a list or iterator!
You need Biopython 1.54 or later, or just wrap the item with [...] to create a list of one element.

14. Why doesn’t str(...) give me the full sequence of a Seq object?
You need Biopython 1.45 or later.

15. Why doesn’t Bio.Blast work with the latest plain text NCBI blast output?
The NCBI keep tweaking the plain text output from the BLAST tools, and keeping our parser up
to date is/was an ongoing struggle. If you aren’t using the latest version of Biopython, you could
try upgrading. However, we (and the NCBI) recommend you use the XML output instead, which is
designed to be read by a computer program.

16. Why has my script using Bio.Entrez.efetch() stopped working?
This could be due to NCBI changes in February 2012 introducing EFetch 2.0. First, they changed
the default return modes - you probably want to add retmode="text" to your call. Second, they are
now stricter about how to provide a list of IDs – Biopython 1.59 onwards turns a list into a comma
separated string automatically.

17. Why doesn’t Bio.Blast.NCBIWWW.qblast() give the same results as the NCBI BLAST website?
You need to specify the same options – the NCBI often adjust the default settings on the website, and
they do not match the QBLAST defaults anymore. Check things like the gap penalties and expectation
threshold.

18. Why can’t I add SeqRecord objects together?
You need Biopython 1.53 or later.

19. Why doesn’t Bio.SeqIO.index_db() work? The module imports fine but there is no index db function!
You need Biopython 1.57 or later (and a Python with SQLite3 support).

20. Where is the MultipleSeqAlignment object? The Bio.Align module imports fine but this class isn’t
there!
You need Biopython 1.54 or later. Alternatively, the older Bio.Align.Generic.Alignment class sup-
ports some of its functionality, but using this is now discouraged.

21. Why can’t I run command line tools directly from the application wrappers?
You need Biopython 1.55 or later. Alternatively, use the Python subprocess module directly.

22. I looked in a directory for code, but I couldn’t find the code that does something. Where’s it hidden?
One thing to know is that we put code in __init__.py files. If you are not used to looking for code
in this file this can be confusing. The reason we do this is to make the imports easier for users. For
instance, instead of having to do a “repetitive” import like from Bio.GenBank import GenBank, you
can just use from Bio import GenBank.

23. Why doesn’t Bio.Fasta work?
We deprecated the Bio.Fasta module in Biopython 1.51 (August 2009) and removed it in Biopython
1.55 (August 2010). There is a brief example showing how to convert old code to use Bio.SeqIO

instead in the DEPRECATED.rst file.

For more general questions, the Python FAQ pages https://docs.python.org/3/faq/index.html may be
useful.
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Chapter 2

Quick Start – What can you do with
Biopython?

This section is designed to get you started quickly with Biopython, and to give a general overview of what is
available and how to use it. All of the examples in this section assume that you have some general working
knowledge of Python, and that you have successfully installed Biopython on your system. If you think you
need to brush up on your Python, the main Python web site provides quite a bit of free documentation to
get started with (https://docs.python.org/2/).

Since much biological work on the computer involves connecting with databases on the internet, some of
the examples will also require a working internet connection in order to run.

Now that that is all out of the way, let’s get into what we can do with Biopython.

2.1 General overview of what Biopython provides

As mentioned in the introduction, Biopython is a set of libraries to provide the ability to deal with “things”
of interest to biologists working on the computer. In general this means that you will need to have at
least some programming experience (in Python, of course!) or at least an interest in learning to program.
Biopython’s job is to make your job easier as a programmer by supplying reusable libraries so that you
can focus on answering your specific question of interest, instead of focusing on the internals of parsing a
particular file format (of course, if you want to help by writing a parser that doesn’t exist and contributing
it to Biopython, please go ahead!). So Biopython’s job is to make you happy!

One thing to note about Biopython is that it often provides multiple ways of “doing the same thing.”
Things have improved in recent releases, but this can still be frustrating as in Python there should ideally
be one right way to do something. However, this can also be a real benefit because it gives you lots of
flexibility and control over the libraries. The tutorial helps to show you the common or easy ways to do
things so that you can just make things work. To learn more about the alternative possibilities, look in the
Cookbook (Chapter 20, this has some cools tricks and tips), the Advanced section (Chapter 22), the built
in “docstrings” (via the Python help command, or the API documentation) or ultimately the code itself.

2.2 Working with sequences

Disputably (of course!), the central object in bioinformatics is the sequence. Thus, we’ll start with a quick
introduction to the Biopython mechanisms for dealing with sequences, the Seq object, which we’ll discuss in
more detail in Chapter 3.

Most of the time when we think about sequences we have in my mind a string of letters like ‘AGTACACTGGT’.
You can create such Seq object with this sequence as follows - the “>>>” represents the Python prompt
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followed by what you would type in:

>>> from Bio.Seq import Seq

>>> my_seq = Seq("AGTACACTGGT")

>>> my_seq

Seq(’AGTACACTGGT’)

>>> print(my_seq)

AGTACACTGGT

>>> my_seq.alphabet

Alphabet()

What we have here is a sequence object with a generic alphabet - reflecting the fact we have not spec-
ified if this is a DNA or protein sequence (okay, a protein with a lot of Alanines, Glycines, Cysteines and
Threonines!). We’ll talk more about alphabets in Chapter 3.

In addition to having an alphabet, the Seq object differs from the Python string in the methods it
supports. You can’t do this with a plain string:

>>> my_seq

Seq(’AGTACACTGGT’)

>>> my_seq.complement()

Seq(’TCATGTGACCA’)

>>> my_seq.reverse_complement()

Seq(’ACCAGTGTACT’)

The next most important class is the SeqRecord or Sequence Record. This holds a sequence (as a Seq

object) with additional annotation including an identifier, name and description. The Bio.SeqIO module
for reading and writing sequence file formats works with SeqRecord objects, which will be introduced below
and covered in more detail by Chapter 5.

This covers the basic features and uses of the Biopython sequence class. Now that you’ve got some idea
of what it is like to interact with the Biopython libraries, it’s time to delve into the fun, fun world of dealing
with biological file formats!

2.3 A usage example

Before we jump right into parsers and everything else to do with Biopython, let’s set up an example to
motivate everything we do and make life more interesting. After all, if there wasn’t any biology in this
tutorial, why would you want you read it?

Since I love plants, I think we’re just going to have to have a plant based example (sorry to all the fans
of other organisms out there!). Having just completed a recent trip to our local greenhouse, we’ve suddenly
developed an incredible obsession with Lady Slipper Orchids (if you wonder why, have a look at some Lady
Slipper Orchids photos on Flickr, or try a Google Image Search).

Of course, orchids are not only beautiful to look at, they are also extremely interesting for people studying
evolution and systematics. So let’s suppose we’re thinking about writing a funding proposal to do a molecular
study of Lady Slipper evolution, and would like to see what kind of research has already been done and how
we can add to that.

After a little bit of reading up we discover that the Lady Slipper Orchids are in the Orchidaceae family and
the Cypripedioideae sub-family and are made up of 5 genera: Cypripedium, Paphiopedilum, Phragmipedium,
Selenipedium and Mexipedium.

That gives us enough to get started delving for more information. So, let’s look at how the Biopython
tools can help us. We’ll start with sequence parsing in Section 2.4, but the orchids will be back later on as
well - for example we’ll search PubMed for papers about orchids and extract sequence data from GenBank in
Chapter 9, extract data from Swiss-Prot from certain orchid proteins in Chapter 10, and work with ClustalW
multiple sequence alignments of orchid proteins in Section 6.4.1.
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2.4 Parsing sequence file formats

A large part of much bioinformatics work involves dealing with the many types of file formats designed to
hold biological data. These files are loaded with interesting biological data, and a special challenge is parsing
these files into a format so that you can manipulate them with some kind of programming language. However
the task of parsing these files can be frustrated by the fact that the formats can change quite regularly, and
that formats may contain small subtleties which can break even the most well designed parsers.

We are now going to briefly introduce the Bio.SeqIO module – you can find out more in Chapter 5. We’ll
start with an online search for our friends, the lady slipper orchids. To keep this introduction simple, we’re
just using the NCBI website by hand. Let’s just take a look through the nucleotide databases at NCBI,
using an Entrez online search (https://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide)
for everything mentioning the text Cypripedioideae (this is the subfamily of lady slipper orchids).

When this tutorial was originally written, this search gave us only 94 hits, which we saved as a FASTA
formatted text file and as a GenBank formatted text file (files ls orchid.fasta and ls orchid.gbk, also included
with the Biopython source code under docs/tutorial/examples/).

If you run the search today, you’ll get hundreds of results! When following the tutorial, if you want to
see the same list of genes, just download the two files above or copy them from docs/examples/ in the
Biopython source code. In Section 2.5 we will look at how to do a search like this from within Python.

2.4.1 Simple FASTA parsing example

If you open the lady slipper orchids FASTA file ls orchid.fasta in your favourite text editor, you’ll see that
the file starts like this:

>gi|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA

CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG

AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG

...

It contains 94 records, each has a line starting with “>” (greater-than symbol) followed by the sequence
on one or more lines. Now try this in Python:

from Bio import SeqIO

for seq_record in SeqIO.parse("ls_orchid.fasta", "fasta"):

print(seq_record.id)

print(repr(seq_record.seq))

print(len(seq_record))

You should get something like this on your screen:

gi|2765658|emb|Z78533.1|CIZ78533

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC’, SingleLetterAlphabet())

740

...

gi|2765564|emb|Z78439.1|PBZ78439

Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT...GCC’, SingleLetterAlphabet())

592

Notice that the FASTA format does not specify the alphabet, so Bio.SeqIO has defaulted to the rather
generic SingleLetterAlphabet() rather than something DNA specific.
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2.4.2 Simple GenBank parsing example

Now let’s load the GenBank file ls orchid.gbk instead - notice that the code to do this is almost identical to
the snippet used above for the FASTA file - the only difference is we change the filename and the format
string:

from Bio import SeqIO

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank"):

print(seq_record.id)

print(repr(seq_record.seq))

print(len(seq_record))

This should give:

Z78533.1

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC’, IUPACAmbiguousDNA())

740

...

Z78439.1

Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT...GCC’, IUPACAmbiguousDNA())

592

This time Bio.SeqIO has been able to choose a sensible alphabet, IUPAC Ambiguous DNA. You’ll also
notice that a shorter string has been used as the seq_record.id in this case.

2.4.3 I love parsing – please don’t stop talking about it!

Biopython has a lot of parsers, and each has its own little special niches based on the sequence format it is
parsing and all of that. Chapter 5 covers Bio.SeqIO in more detail, while Chapter 6 introduces Bio.AlignIO
for sequence alignments.

While the most popular file formats have parsers integrated into Bio.SeqIO and/or Bio.AlignIO, for
some of the rarer and unloved file formats there is either no parser at all, or an old parser which has
not been linked in yet. Please also check the wiki pages http://biopython.org/wiki/SeqIO and http:

//biopython.org/wiki/AlignIO for the latest information, or ask on the mailing list. The wiki pages
should include an up to date list of supported file types, and some additional examples.

The next place to look for information about specific parsers and how to do cool things with them is in
the Cookbook (Chapter 20 of this Tutorial). If you don’t find the information you are looking for, please
consider helping out your poor overworked documentors and submitting a cookbook entry about it! (once
you figure out how to do it, that is!)

2.5 Connecting with biological databases

One of the very common things that you need to do in bioinformatics is extract information from biological
databases. It can be quite tedious to access these databases manually, especially if you have a lot of repetitive
work to do. Biopython attempts to save you time and energy by making some on-line databases available
from Python scripts. Currently, Biopython has code to extract information from the following databases:

• Entrez (and PubMed) from the NCBI – See Chapter 9.

• ExPASy – See Chapter 10.

• SCOP – See the Bio.SCOP.search() function.
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The code in these modules basically makes it easy to write Python code that interact with the CGI
scripts on these pages, so that you can get results in an easy to deal with format. In some cases, the results
can be tightly integrated with the Biopython parsers to make it even easier to extract information.

2.6 What to do next

Now that you’ve made it this far, you hopefully have a good understanding of the basics of Biopython and
are ready to start using it for doing useful work. The best thing to do now is finish reading this tutorial,
and then if you want start snooping around in the source code, and looking at the automatically generated
documentation.

Once you get a picture of what you want to do, and what libraries in Biopython will do it, you should
take a peak at the Cookbook (Chapter 20), which may have example code to do something similar to what
you want to do.

If you know what you want to do, but can’t figure out how to do it, please feel free to post questions
to the main Biopython list (see http://biopython.org/wiki/Mailing_lists). This will not only help us
answer your question, it will also allow us to improve the documentation so it can help the next person do
what you want to do.

Enjoy the code!
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Chapter 3

Sequence objects

Biological sequences are arguably the central object in Bioinformatics, and in this chapter we’ll introduce
the Biopython mechanism for dealing with sequences, the Seq object. Chapter 4 will introduce the related
SeqRecord object, which combines the sequence information with any annotation, used again in Chapter 5
for Sequence Input/Output.

Sequences are essentially strings of letters like AGTACACTGGT, which seems very natural since this is the
most common way that sequences are seen in biological file formats.

There are two important differences between Seq objects and standard Python strings. First of all, they
have different methods. Although the Seq object supports many of the same methods as a plain string, its
translate() method differs by doing biological translation, and there are also additional biologically relevant
methods like reverse_complement(). Secondly, the Seq object has an important attribute, alphabet, which
is an object describing what the individual characters making up the sequence string “mean”, and how they
should be interpreted. For example, is AGTACACTGGT a DNA sequence, or just a protein sequence that
happens to be rich in Alanines, Glycines, Cysteines and Threonines?

3.1 Sequences and Alphabets

The alphabet object is perhaps the important thing that makes the Seq object more than just a string. The
currently available alphabets for Biopython are defined in the Bio.Alphabet module. We’ll use the IUPAC
alphabets here to deal with some of our favorite objects: DNA, RNA and Proteins.

Bio.Alphabet.IUPAC provides basic definitions for proteins, DNA and RNA, but additionally provides
the ability to extend and customize the basic definitions. For instance, for proteins, there is a basic IU-
PACProtein class, but there is an additional ExtendedIUPACProtein class providing for the additional
elements “U” (or “Sec” for selenocysteine) and “O” (or “Pyl” for pyrrolysine), plus the ambiguous symbols
“B” (or “Asx” for asparagine or aspartic acid), “Z” (or “Glx” for glutamine or glutamic acid), “J” (or “Xle”
for leucine isoleucine) and “X” (or “Xxx” for an unknown amino acid). For DNA you’ve got choices of IUPA-
CUnambiguousDNA, which provides for just the basic letters, IUPACAmbiguousDNA (which provides for
ambiguity letters for every possible situation) and ExtendedIUPACDNA, which allows letters for modified
bases. Similarly, RNA can be represented by IUPACAmbiguousRNA or IUPACUnambiguousRNA.

The advantages of having an alphabet class are two fold. First, this gives an idea of the type of information
the Seq object contains. Secondly, this provides a means of constraining the information, as a means of type
checking.

Now that we know what we are dealing with, let’s look at how to utilize this class to do interesting work.
You can create an ambiguous sequence with the default generic alphabet like this:

>>> from Bio.Seq import Seq

>>> my_seq = Seq("AGTACACTGGT")
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>>> my_seq

Seq(’AGTACACTGGT’)

>>> my_seq.alphabet

Alphabet()

However, where possible you should specify the alphabet explicitly when creating your sequence objects
- in this case an unambiguous DNA alphabet object:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("AGTACACTGGT", IUPAC.unambiguous_dna)

>>> my_seq

Seq(’AGTACACTGGT’, IUPACUnambiguousDNA())

>>> my_seq.alphabet

IUPACUnambiguousDNA()

Unless of course, this really is an amino acid sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_prot = Seq("AGTACACTGGT", IUPAC.protein)

>>> my_prot

Seq(’AGTACACTGGT’, IUPACProtein())

>>> my_prot.alphabet

IUPACProtein()

3.2 Sequences act like strings

In many ways, we can deal with Seq objects as if they were normal Python strings, for example getting the
length, or iterating over the elements:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCG", IUPAC.unambiguous_dna)

>>> for index, letter in enumerate(my_seq):

... print("%i %s" % (index, letter))

0 G

1 A

2 T

3 C

4 G

>>> print(len(my_seq))

5

You can access elements of the sequence in the same way as for strings (but remember, Python counts
from zero!):

>>> print(my_seq[0]) #first letter

G

>>> print(my_seq[2]) #third letter

T

>>> print(my_seq[-1]) #last letter

G
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The Seq object has a .count() method, just like a string. Note that this means that like a Python
string, this gives a non-overlapping count:

>>> from Bio.Seq import Seq

>>> "AAAA".count("AA")

2

>>> Seq("AAAA").count("AA")

2

For some biological uses, you may actually want an overlapping count (i.e. 3 in this trivial example). When
searching for single letters, this makes no difference:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)

>>> len(my_seq)

32

>>> my_seq.count("G")

9

>>> 100 * float(my_seq.count("G") + my_seq.count("C")) / len(my_seq)

46.875

While you could use the above snippet of code to calculate a GC%, note that the Bio.SeqUtils module
has several GC functions already built. For example:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> from Bio.SeqUtils import GC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)

>>> GC(my_seq)

46.875

Note that using the Bio.SeqUtils.GC() function should automatically cope with mixed case sequences and
the ambiguous nucleotide S which means G or C.

Also note that just like a normal Python string, the Seq object is in some ways “read-only”. If you need
to edit your sequence, for example simulating a point mutation, look at the Section 3.12 below which talks
about the MutableSeq object.

3.3 Slicing a sequence

A more complicated example, let’s get a slice of the sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)

>>> my_seq[4:12]

Seq(’GATGGGCC’, IUPACUnambiguousDNA())

Two things are interesting to note. First, this follows the normal conventions for Python strings. So
the first element of the sequence is 0 (which is normal for computer science, but not so normal for biology).
When you do a slice the first item is included (i.e. 4 in this case) and the last is excluded (12 in this case),
which is the way things work in Python, but of course not necessarily the way everyone in the world would
expect. The main goal is to stay consistent with what Python does.
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The second thing to notice is that the slice is performed on the sequence data string, but the new object
produced is another Seq object which retains the alphabet information from the original Seq object.

Also like a Python string, you can do slices with a start, stop and stride (the step size, which defaults to
one). For example, we can get the first, second and third codon positions of this DNA sequence:

>>> my_seq[0::3]

Seq(’GCTGTAGTAAG’, IUPACUnambiguousDNA())

>>> my_seq[1::3]

Seq(’AGGCATGCATC’, IUPACUnambiguousDNA())

>>> my_seq[2::3]

Seq(’TAGCTAAGAC’, IUPACUnambiguousDNA())

Another stride trick you might have seen with a Python string is the use of a -1 stride to reverse the
string. You can do this with a Seq object too:

>>> my_seq[::-1]

Seq(’CGCTAAAAGCTAGGATATATCCGGGTAGCTAG’, IUPACUnambiguousDNA())

3.4 Turning Seq objects into strings

If you really do just need a plain string, for example to write to a file, or insert into a database, then this is
very easy to get:

>>> str(my_seq)

’GATCGATGGGCCTATATAGGATCGAAAATCGC’

Since calling str() on a Seq object returns the full sequence as a string, you often don’t actually have to
do this conversion explicitly. Python does this automatically in the print function (and the print statement
under Python 2):

>>> print(my_seq)

GATCGATGGGCCTATATAGGATCGAAAATCGC

You can also use the Seq object directly with a %s placeholder when using the Python string formatting
or interpolation operator (%):

>>> fasta_format_string = ">Name\n%s\n" % my_seq

>>> print(fasta_format_string)

>Name

GATCGATGGGCCTATATAGGATCGAAAATCGC

<BLANKLINE>

This line of code constructs a simple FASTA format record (without worrying about line wrapping). Sec-
tion 4.6 describes a neat way to get a FASTA formatted string from a SeqRecord object, while the more
general topic of reading and writing FASTA format sequence files is covered in Chapter 5.

>>> str(my_seq)

’GATCGATGGGCCTATATAGGATCGAAAATCGC’
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3.5 Concatenating or adding sequences

Naturally, you can in principle add any two Seq objects together - just like you can with Python strings
to concatenate them. However, you can’t add sequences with incompatible alphabets, such as a protein
sequence and a DNA sequence:

>>> from Bio.Alphabet import IUPAC

>>> from Bio.Seq import Seq

>>> protein_seq = Seq("EVRNAK", IUPAC.protein)

>>> dna_seq = Seq("ACGT", IUPAC.unambiguous_dna)

>>> protein_seq + dna_seq

Traceback (most recent call last):

...

TypeError: Incompatible alphabets IUPACProtein() and IUPACUnambiguousDNA()

If you really wanted to do this, you’d have to first give both sequences generic alphabets:

>>> from Bio.Alphabet import generic_alphabet

>>> protein_seq.alphabet = generic_alphabet

>>> dna_seq.alphabet = generic_alphabet

>>> protein_seq + dna_seq

Seq(’EVRNAKACGT’)

Here is an example of adding a generic nucleotide sequence to an unambiguous IUPAC DNA sequence,
resulting in an ambiguous nucleotide sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_nucleotide

>>> from Bio.Alphabet import IUPAC

>>> nuc_seq = Seq("GATCGATGC", generic_nucleotide)

>>> dna_seq = Seq("ACGT", IUPAC.unambiguous_dna)

>>> nuc_seq

Seq(’GATCGATGC’, NucleotideAlphabet())

>>> dna_seq

Seq(’ACGT’, IUPACUnambiguousDNA())

>>> nuc_seq + dna_seq

Seq(’GATCGATGCACGT’, NucleotideAlphabet())

You may often have many sequences to add together, which can be done with a for loop like this:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna

>>> list_of_seqs = [Seq("ACGT", generic_dna), Seq("AACC", generic_dna), Seq("GGTT", generic_dna)]

>>> concatenated = Seq("", generic_dna)

>>> for s in list_of_seqs:

... concatenated += s

...

>>> concatenated

Seq(’ACGTAACCGGTT’, DNAAlphabet())

Or, a more elegant approach is to the use built in sum function with its optional start value argument
(which otherwise defaults to zero):
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>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna

>>> list_of_seqs = [Seq("ACGT", generic_dna), Seq("AACC", generic_dna), Seq("GGTT", generic_dna)]

>>> sum(list_of_seqs, Seq("", generic_dna))

Seq(’ACGTAACCGGTT’, DNAAlphabet())

Unlike the Python string, the Biopython Seq does not (currently) have a .join method.

3.6 Changing case

Python strings have very useful upper and lower methods for changing the case. As of Biopython 1.53, the
Seq object gained similar methods which are alphabet aware. For example,

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna

>>> dna_seq = Seq("acgtACGT", generic_dna)

>>> dna_seq

Seq(’acgtACGT’, DNAAlphabet())

>>> dna_seq.upper()

Seq(’ACGTACGT’, DNAAlphabet())

>>> dna_seq.lower()

Seq(’acgtacgt’, DNAAlphabet())

These are useful for doing case insensitive matching:

>>> "GTAC" in dna_seq

False

>>> "GTAC" in dna_seq.upper()

True

Note that strictly speaking the IUPAC alphabets are for upper case sequences only, thus:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> dna_seq = Seq("ACGT", IUPAC.unambiguous_dna)

>>> dna_seq

Seq(’ACGT’, IUPACUnambiguousDNA())

>>> dna_seq.lower()

Seq(’acgt’, DNAAlphabet())

3.7 Nucleotide sequences and (reverse) complements

For nucleotide sequences, you can easily obtain the complement or reverse complement of a Seq object using
its built-in methods:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)

>>> my_seq

Seq(’GATCGATGGGCCTATATAGGATCGAAAATCGC’, IUPACUnambiguousDNA())

>>> my_seq.complement()

Seq(’CTAGCTACCCGGATATATCCTAGCTTTTAGCG’, IUPACUnambiguousDNA())

>>> my_seq.reverse_complement()

Seq(’GCGATTTTCGATCCTATATAGGCCCATCGATC’, IUPACUnambiguousDNA())
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As mentioned earlier, an easy way to just reverse a Seq object (or a Python string) is slice it with -1
step:

>>> my_seq[::-1]

Seq(’CGCTAAAAGCTAGGATATATCCGGGTAGCTAG’, IUPACUnambiguousDNA())

In all of these operations, the alphabet property is maintained. This is very useful in case you accidentally
end up trying to do something weird like take the (reverse)complement of a protein sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> protein_seq = Seq("EVRNAK", IUPAC.protein)

>>> protein_seq.complement()

Traceback (most recent call last):

...

ValueError: Proteins do not have complements!

The example in Section 5.5.3 combines the Seq object’s reverse complement method with Bio.SeqIO for
sequence input/output.

3.8 Transcription

Before talking about transcription, I want to try to clarify the strand issue. Consider the following (made
up) stretch of double stranded DNA which encodes a short peptide:

DNA coding strand (aka Crick strand, strand +1)

5’ ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3’
|||||||||||||||||||||||||||||||||||||||

3’ TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5’
DNA template strand (aka Watson strand, strand −1)

|
Transcription

↓
5’ AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3’

Single stranded messenger RNA

The actual biological transcription process works from the template strand, doing a reverse complement
(TCAG → CUGA) to give the mRNA. However, in Biopython and bioinformatics in general, we typically
work directly with the coding strand because this means we can get the mRNA sequence just by switching
T → U.

Now let’s actually get down to doing a transcription in Biopython. First, let’s create Seq objects for the
coding and template DNA strands:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", IUPAC.unambiguous_dna)

>>> coding_dna

Seq(’ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’, IUPACUnambiguousDNA())

>>> template_dna = coding_dna.reverse_complement()

>>> template_dna

Seq(’CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT’, IUPACUnambiguousDNA())
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These should match the figure above - remember by convention nucleotide sequences are normally read from
the 5’ to 3’ direction, while in the figure the template strand is shown reversed.

Now let’s transcribe the coding strand into the corresponding mRNA, using the Seq object’s built in
transcribe method:

>>> coding_dna

Seq(’ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’, IUPACUnambiguousDNA())

>>> messenger_rna = coding_dna.transcribe()

>>> messenger_rna

Seq(’AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’, IUPACUnambiguousRNA())

As you can see, all this does is switch T → U, and adjust the alphabet.
If you do want to do a true biological transcription starting with the template strand, then this becomes

a two-step process:

>>> template_dna.reverse_complement().transcribe()

Seq(’AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’, IUPACUnambiguousRNA())

The Seq object also includes a back-transcription method for going from the mRNA to the coding strand
of the DNA. Again, this is a simple U → T substitution and associated change of alphabet:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG", IUPAC.unambiguous_rna)

>>> messenger_rna

Seq(’AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’, IUPACUnambiguousRNA())

>>> messenger_rna.back_transcribe()

Seq(’ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’, IUPACUnambiguousDNA())

Note: The Seq object’s transcribe and back_transcribe methods were added in Biopython 1.49. For
older releases you would have to use the Bio.Seq module’s functions instead, see Section 3.14.

3.9 Translation

Sticking with the same example discussed in the transcription section above, now let’s translate this mRNA
into the corresponding protein sequence - again taking advantage of one of the Seq object’s biological meth-
ods:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG", IUPAC.unambiguous_rna)

>>> messenger_rna

Seq(’AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’, IUPACUnambiguousRNA())

>>> messenger_rna.translate()

Seq(’MAIVMGR*KGAR*’, HasStopCodon(IUPACProtein(), ’*’))

You can also translate directly from the coding strand DNA sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", IUPAC.unambiguous_dna)

>>> coding_dna

Seq(’ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’, IUPACUnambiguousDNA())

>>> coding_dna.translate()

Seq(’MAIVMGR*KGAR*’, HasStopCodon(IUPACProtein(), ’*’))
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You should notice in the above protein sequences that in addition to the end stop character, there is
an internal stop as well. This was a deliberate choice of example, as it gives an excuse to talk about some
optional arguments, including different translation tables (Genetic Codes).

The translation tables available in Biopython are based on those from the NCBI (see the next section of
this tutorial). By default, translation will use the standard genetic code (NCBI table id 1). Suppose we are
dealing with a mitochondrial sequence. We need to tell the translation function to use the relevant genetic
code instead:

>>> coding_dna.translate(table="Vertebrate Mitochondrial")

Seq(’MAIVMGRWKGAR*’, HasStopCodon(IUPACProtein(), ’*’))

You can also specify the table using the NCBI table number which is shorter, and often included in the
feature annotation of GenBank files:

>>> coding_dna.translate(table=2)

Seq(’MAIVMGRWKGAR*’, HasStopCodon(IUPACProtein(), ’*’))

Now, you may want to translate the nucleotides up to the first in frame stop codon, and then stop (as
happens in nature):

>>> coding_dna.translate()

Seq(’MAIVMGR*KGAR*’, HasStopCodon(IUPACProtein(), ’*’))

>>> coding_dna.translate(to_stop=True)

Seq(’MAIVMGR’, IUPACProtein())

>>> coding_dna.translate(table=2)

Seq(’MAIVMGRWKGAR*’, HasStopCodon(IUPACProtein(), ’*’))

>>> coding_dna.translate(table=2, to_stop=True)

Seq(’MAIVMGRWKGAR’, IUPACProtein())

Notice that when you use the to_stop argument, the stop codon itself is not translated - and the stop symbol
is not included at the end of your protein sequence.

You can even specify the stop symbol if you don’t like the default asterisk:

>>> coding_dna.translate(table=2, stop_symbol="@")

Seq(’MAIVMGRWKGAR@’, HasStopCodon(IUPACProtein(), ’@’))

Now, suppose you have a complete coding sequence CDS, which is to say a nucleotide sequence (e.g.
mRNA – after any splicing) which is a whole number of codons (i.e. the length is a multiple of three),
commences with a start codon, ends with a stop codon, and has no internal in-frame stop codons. In
general, given a complete CDS, the default translate method will do what you want (perhaps with the
to_stop option). However, what if your sequence uses a non-standard start codon? This happens a lot in
bacteria – for example the gene yaaX in E. coli K12:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna

>>> gene = Seq("GTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCA" + \

... "GCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGTAAAATTACAGATAGGCGATCGTGAT" + \

... "AATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACAT" + \

... "TATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCAT" + \

... "AAGAAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAA",

... generic_dna)

>>> gene.translate(table="Bacterial")

Seq(’VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HR*’,

HasStopCodon(ExtendedIUPACProtein(), ’*’)
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>>> gene.translate(table="Bacterial", to_stop=True)

Seq(’VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HHR’,

ExtendedIUPACProtein())

In the bacterial genetic code GTG is a valid start codon, and while it does normally encode Valine, if used as
a start codon it should be translated as methionine. This happens if you tell Biopython your sequence is a
complete CDS:

>>> gene.translate(table="Bacterial", cds=True)

Seq(’MKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HHR’,

ExtendedIUPACProtein())

In addition to telling Biopython to translate an alternative start codon as methionine, using this option
also makes sure your sequence really is a valid CDS (you’ll get an exception if not).

The example in Section 20.1.3 combines the Seq object’s translate method with Bio.SeqIO for sequence
input/output.

3.10 Translation Tables

In the previous sections we talked about the Seq object translation method (and mentioned the equivalent
function in the Bio.Seq module – see Section 3.14). Internally these use codon table objects derived from
the NCBI information at ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt, also shown on https:

//www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi in a much more readable layout.
As before, let’s just focus on two choices: the Standard translation table, and the translation table for

Vertebrate Mitochondrial DNA.

>>> from Bio.Data import CodonTable

>>> standard_table = CodonTable.unambiguous_dna_by_name["Standard"]

>>> mito_table = CodonTable.unambiguous_dna_by_name["Vertebrate Mitochondrial"]

Alternatively, these tables are labeled with ID numbers 1 and 2, respectively:

>>> from Bio.Data import CodonTable

>>> standard_table = CodonTable.unambiguous_dna_by_id[1]

>>> mito_table = CodonTable.unambiguous_dna_by_id[2]

You can compare the actual tables visually by printing them:

>>> print(standard_table)

Table 1 Standard, SGC0

| T | C | A | G |

--+---------+---------+---------+---------+--

T | TTT F | TCT S | TAT Y | TGT C | T

T | TTC F | TCC S | TAC Y | TGC C | C

T | TTA L | TCA S | TAA Stop| TGA Stop| A

T | TTG L(s)| TCG S | TAG Stop| TGG W | G

--+---------+---------+---------+---------+--

C | CTT L | CCT P | CAT H | CGT R | T

C | CTC L | CCC P | CAC H | CGC R | C

C | CTA L | CCA P | CAA Q | CGA R | A

C | CTG L(s)| CCG P | CAG Q | CGG R | G

--+---------+---------+---------+---------+--
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A | ATT I | ACT T | AAT N | AGT S | T

A | ATC I | ACC T | AAC N | AGC S | C

A | ATA I | ACA T | AAA K | AGA R | A

A | ATG M(s)| ACG T | AAG K | AGG R | G

--+---------+---------+---------+---------+--

G | GTT V | GCT A | GAT D | GGT G | T

G | GTC V | GCC A | GAC D | GGC G | C

G | GTA V | GCA A | GAA E | GGA G | A

G | GTG V | GCG A | GAG E | GGG G | G

--+---------+---------+---------+---------+--

and:

>>> print(mito_table)

Table 2 Vertebrate Mitochondrial, SGC1

| T | C | A | G |

--+---------+---------+---------+---------+--

T | TTT F | TCT S | TAT Y | TGT C | T

T | TTC F | TCC S | TAC Y | TGC C | C

T | TTA L | TCA S | TAA Stop| TGA W | A

T | TTG L | TCG S | TAG Stop| TGG W | G

--+---------+---------+---------+---------+--

C | CTT L | CCT P | CAT H | CGT R | T

C | CTC L | CCC P | CAC H | CGC R | C

C | CTA L | CCA P | CAA Q | CGA R | A

C | CTG L | CCG P | CAG Q | CGG R | G

--+---------+---------+---------+---------+--

A | ATT I(s)| ACT T | AAT N | AGT S | T

A | ATC I(s)| ACC T | AAC N | AGC S | C

A | ATA M(s)| ACA T | AAA K | AGA Stop| A

A | ATG M(s)| ACG T | AAG K | AGG Stop| G

--+---------+---------+---------+---------+--

G | GTT V | GCT A | GAT D | GGT G | T

G | GTC V | GCC A | GAC D | GGC G | C

G | GTA V | GCA A | GAA E | GGA G | A

G | GTG V(s)| GCG A | GAG E | GGG G | G

--+---------+---------+---------+---------+--

You may find these following properties useful – for example if you are trying to do your own gene finding:

>>> mito_table.stop_codons

[’TAA’, ’TAG’, ’AGA’, ’AGG’]

>>> mito_table.start_codons

[’ATT’, ’ATC’, ’ATA’, ’ATG’, ’GTG’]

>>> mito_table.forward_table["ACG"]

’T’

3.11 Comparing Seq objects

Sequence comparison is actually a very complicated topic, and there is no easy way to decide if two sequences
are equal. The basic problem is the meaning of the letters in a sequence are context dependent - the letter
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“A” could be part of a DNA, RNA or protein sequence. Biopython uses alphabet objects as part of each
Seq object to try to capture this information - so comparing two Seq objects could mean considering both
the sequence strings and the alphabets.

For example, you might argue that the two DNA Seq objects Seq("ACGT", IUPAC.unambiguous dna)

and Seq("ACGT", IUPAC.ambiguous dna) should be equal, even though they do have different alphabets.
Depending on the context this could be important.

This gets worse – suppose you think Seq("ACGT", IUPAC.unambiguous dna) and Seq("ACGT") (i.e. the
default generic alphabet) should be equal. Then, logically, Seq("ACGT", IUPAC.protein) and Seq("ACGT")

should also be equal. Now, in logic if A = B and B = C, by transitivity we expect A = C. So for logical
consistency we’d require Seq("ACGT", IUPAC.unambiguous dna) and Seq("ACGT", IUPAC.protein) to be
equal – which most people would agree is just not right. This transitivity also has implications for using Seq

objects as Python dictionary keys.
Now, in everyday use, your sequences will probably all have the same alphabet, or at least all be the

same type of sequence (all DNA, all RNA, or all protein). What you probably want is to just compare the
sequences as strings – which you can do explicitly:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> seq1 = Seq("ACGT", IUPAC.unambiguous_dna)

>>> seq2 = Seq("ACGT", IUPAC.ambiguous_dna)

>>> str(seq1) == str(seq2)

True

>>> str(seq1) == str(seq1)

True

So, what does Biopython do? Well, as of Biopython 1.65, sequence comparison only looks at the sequence,
essentially ignoring the alphabet:

>>> seq1 == seq2

True

>>> seq1 == "ACGT"

True

As an extension to this, using sequence objects as keys in a Python dictionary is now equivalent to using
the sequence as a plain string for the key. See also Section 3.4.

Note if you compare sequences with incompatible alphabets (e.g. DNA vs RNA, or nucleotide versus
protein), then you will get a warning but for the comparison itself only the string of letters in the sequence
is used:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna, generic_protein

>>> dna_seq = Seq("ACGT", generic_dna)

>>> prot_seq = Seq("ACGT", generic_protein)

>>> dna_seq == prot_seq

BiopythonWarning: Incompatible alphabets DNAAlphabet() and ProteinAlphabet()

True

WARNING: Older versions of Biopython instead used to check if the Seq objects were the same object
in memory. This is important if you need to support scripts on both old and new versions of Biopython.
Here make the comparison explicit by wrapping your sequence objects with either str(...) for string based
comparison or id(...) for object instance based comparison.
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3.12 MutableSeq objects

Just like the normal Python string, the Seq object is “read only”, or in Python terminology, immutable.
Apart from wanting the Seq object to act like a string, this is also a useful default since in many biological
applications you want to ensure you are not changing your sequence data:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)

Observe what happens if you try to edit the sequence:

>>> my_seq[5] = "G"

Traceback (most recent call last):

...

TypeError: ’Seq’ object does not support item assignment

However, you can convert it into a mutable sequence (a MutableSeq object) and do pretty much anything
you want with it:

>>> mutable_seq = my_seq.tomutable()

>>> mutable_seq

MutableSeq(’GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA’, IUPACUnambiguousDNA())

Alternatively, you can create a MutableSeq object directly from a string:

>>> from Bio.Seq import MutableSeq

>>> from Bio.Alphabet import IUPAC

>>> mutable_seq = MutableSeq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)

Either way will give you a sequence object which can be changed:

>>> mutable_seq

MutableSeq(’GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA’, IUPACUnambiguousDNA())

>>> mutable_seq[5] = "C"

>>> mutable_seq

MutableSeq(’GCCATCGTAATGGGCCGCTGAAAGGGTGCCCGA’, IUPACUnambiguousDNA())

>>> mutable_seq.remove("T")

>>> mutable_seq

MutableSeq(’GCCACGTAATGGGCCGCTGAAAGGGTGCCCGA’, IUPACUnambiguousDNA())

>>> mutable_seq.reverse()

>>> mutable_seq

MutableSeq(’AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG’, IUPACUnambiguousDNA())

Do note that unlike the Seq object, the MutableSeq object’s methods like reverse_complement() and
reverse() act in-situ!

An important technical difference between mutable and immutable objects in Python means that you
can’t use a MutableSeq object as a dictionary key, but you can use a Python string or a Seq object in this
way.

Once you have finished editing your a MutableSeq object, it’s easy to get back to a read-only Seq object
should you need to:

>>> new_seq = mutable_seq.toseq()

>>> new_seq

Seq(’AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG’, IUPACUnambiguousDNA())

You can also get a string from a MutableSeq object just like from a Seq object (Section 3.4).
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3.13 UnknownSeq objects

The UnknownSeq object is a subclass of the basic Seq object and its purpose is to represent a sequence where
we know the length, but not the actual letters making it up. You could of course use a normal Seq object
in this situation, but it wastes rather a lot of memory to hold a string of a million “N” characters when you
could just store a single letter “N” and the desired length as an integer.

>>> from Bio.Seq import UnknownSeq

>>> unk = UnknownSeq(20)

>>> unk

UnknownSeq(20, character=’?’)

>>> print(unk)

????????????????????

>>> len(unk)

20

You can of course specify an alphabet, meaning for nucleotide sequences the letter defaults to “N” and
for proteins “X”, rather than just “?”.

>>> from Bio.Seq import UnknownSeq

>>> from Bio.Alphabet import IUPAC

>>> unk_dna = UnknownSeq(20, alphabet=IUPAC.ambiguous_dna)

>>> unk_dna

UnknownSeq(20, alphabet=IUPACAmbiguousDNA(), character=’N’)

>>> print(unk_dna)

NNNNNNNNNNNNNNNNNNNN

You can use all the usual Seq object methods too, note these give back memory saving UnknownSeq

objects where appropriate as you might expect:

>>> unk_dna

UnknownSeq(20, alphabet=IUPACAmbiguousDNA(), character=’N’)

>>> unk_dna.complement()

UnknownSeq(20, alphabet=IUPACAmbiguousDNA(), character=’N’)

>>> unk_dna.reverse_complement()

UnknownSeq(20, alphabet=IUPACAmbiguousDNA(), character=’N’)

>>> unk_dna.transcribe()

UnknownSeq(20, alphabet=IUPACAmbiguousRNA(), character=’N’)

>>> unk_protein = unk_dna.translate()

>>> unk_protein

UnknownSeq(6, alphabet=ProteinAlphabet(), character=’X’)

>>> print(unk_protein)

XXXXXX

>>> len(unk_protein)

6

You may be able to find a use for the UnknownSeq object in your own code, but it is more likely that you
will first come across them in a SeqRecord object created by Bio.SeqIO (see Chapter 5). Some sequence file
formats don’t always include the actual sequence, for example GenBank and EMBL files may include a list
of features but for the sequence just present the contig information. Alternatively, the QUAL files used in
sequencing work hold quality scores but they never contain a sequence – instead there is a partner FASTA
file which does have the sequence.
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3.14 Working with strings directly

To close this chapter, for those you who really don’t want to use the sequence objects (or who prefer a
functional programming style to an object orientated one), there are module level functions in Bio.Seq will
accept plain Python strings, Seq objects (including UnknownSeq objects) or MutableSeq objects:

>>> from Bio.Seq import reverse_complement, transcribe, back_transcribe, translate

>>> my_string = "GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTGGTTAG"

>>> reverse_complement(my_string)

’CTAACCAGCAGCACGACCACCCTTCCAACGACCCATAACAGC’

>>> transcribe(my_string)

’GCUGUUAUGGGUCGUUGGAAGGGUGGUCGUGCUGCUGGUUAG’

>>> back_transcribe(my_string)

’GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTGGTTAG’

>>> translate(my_string)

’AVMGRWKGGRAAG*’

You are, however, encouraged to work with Seq objects by default.
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Chapter 4

Sequence annotation objects

Chapter 3 introduced the sequence classes. Immediately “above” the Seq class is the Sequence Record or
SeqRecord class, defined in the Bio.SeqRecord module. This class allows higher level features such as
identifiers and features (as SeqFeature objects) to be associated with the sequence, and is used throughout
the sequence input/output interface Bio.SeqIO described fully in Chapter 5.

If you are only going to be working with simple data like FASTA files, you can probably skip this chapter
for now. If on the other hand you are going to be using richly annotated sequence data, say from GenBank
or EMBL files, this information is quite important.

While this chapter should cover most things to do with the SeqRecord and SeqFeature objects in this
chapter, you may also want to read the SeqRecord wiki page (http://biopython.org/wiki/SeqRecord),
and the built in documentation (also online – SeqRecord and SeqFeature):

>>> from Bio.SeqRecord import SeqRecord

>>> help(SeqRecord)

...

4.1 The SeqRecord object

The SeqRecord (Sequence Record) class is defined in the Bio.SeqRecord module. This class allows higher
level features such as identifiers and features to be associated with a sequence (see Chapter 3), and is the
basic data type for the Bio.SeqIO sequence input/output interface (see Chapter 5).

The SeqRecord class itself is quite simple, and offers the following information as attributes:

.seq – The sequence itself, typically a Seq object.

.id – The primary ID used to identify the sequence – a string. In most cases this is something like an
accession number.

.name – A “common” name/id for the sequence – a string. In some cases this will be the same as the
accession number, but it could also be a clone name. I think of this as being analogous to the LOCUS
id in a GenBank record.

.description – A human readable description or expressive name for the sequence – a string.

.letter annotations – Holds per-letter-annotations using a (restricted) dictionary of additional information
about the letters in the sequence. The keys are the name of the information, and the information is
contained in the value as a Python sequence (i.e. a list, tuple or string) with the same length as
the sequence itself. This is often used for quality scores (e.g. Section 20.1.6) or secondary structure
information (e.g. from Stockholm/PFAM alignment files).
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.annotations – A dictionary of additional information about the sequence. The keys are the name of
the information, and the information is contained in the value. This allows the addition of more
“unstructured” information to the sequence.

.features – A list of SeqFeature objects with more structured information about the features on a sequence
(e.g. position of genes on a genome, or domains on a protein sequence). The structure of sequence
features is described below in Section 4.3.

.dbxrefs - A list of database cross-references as strings.

4.2 Creating a SeqRecord

Using a SeqRecord object is not very complicated, since all of the information is presented as attributes of
the class. Usually you won’t create a SeqRecord “by hand”, but instead use Bio.SeqIO to read in a sequence
file for you (see Chapter 5 and the examples below). However, creating SeqRecord can be quite simple.

4.2.1 SeqRecord objects from scratch

To create a SeqRecord at a minimum you just need a Seq object:

>>> from Bio.Seq import Seq

>>> simple_seq = Seq("GATC")

>>> from Bio.SeqRecord import SeqRecord

>>> simple_seq_r = SeqRecord(simple_seq)

Additionally, you can also pass the id, name and description to the initialization function, but if not they
will be set as strings indicating they are unknown, and can be modified subsequently:

>>> simple_seq_r.id

’<unknown id>’

>>> simple_seq_r.id = "AC12345"

>>> simple_seq_r.description = "Made up sequence I wish I could write a paper about"

>>> print(simple_seq_r.description)

Made up sequence I wish I could write a paper about

>>> simple_seq_r.seq

Seq(’GATC’)

Including an identifier is very important if you want to output your SeqRecord to a file. You would
normally include this when creating the object:

>>> from Bio.Seq import Seq

>>> simple_seq = Seq("GATC")

>>> from Bio.SeqRecord import SeqRecord

>>> simple_seq_r = SeqRecord(simple_seq, id="AC12345")

As mentioned above, the SeqRecord has an dictionary attribute annotations. This is used for any
miscellaneous annotations that doesn’t fit under one of the other more specific attributes. Adding annotations
is easy, and just involves dealing directly with the annotation dictionary:

>>> simple_seq_r.annotations["evidence"] = "None. I just made it up."

>>> print(simple_seq_r.annotations)

{’evidence’: ’None. I just made it up.’}

>>> print(simple_seq_r.annotations["evidence"])

None. I just made it up.
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Working with per-letter-annotations is similar, letter_annotations is a dictionary like attribute which
will let you assign any Python sequence (i.e. a string, list or tuple) which has the same length as the sequence:

>>> simple_seq_r.letter_annotations["phred_quality"] = [40, 40, 38, 30]

>>> print(simple_seq_r.letter_annotations)

{’phred_quality’: [40, 40, 38, 30]}

>>> print(simple_seq_r.letter_annotations["phred_quality"])

[40, 40, 38, 30]

The dbxrefs and features attributes are just Python lists, and should be used to store strings and
SeqFeature objects (discussed later in this chapter) respectively.

4.2.2 SeqRecord objects from FASTA files

This example uses a fairly large FASTA file containing the whole sequence for Yersinia pestis biovar Microtus
str. 91001 plasmid pPCP1, originally downloaded from the NCBI. This file is included with the Biopython
unit tests under the GenBank folder, or online NC 005816.fna from our website.

The file starts like this - and you can check there is only one record present (i.e. only one line starting
with a greater than symbol):

>gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete sequence

TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

...

Back in Chapter 2 you will have seen the function Bio.SeqIO.parse(...) used to loop over all the
records in a file as SeqRecord objects. The Bio.SeqIO module has a sister function for use on files which
contain just one record which we’ll use here (see Chapter 5 for details):

>>> from Bio import SeqIO

>>> record = SeqIO.read("NC_005816.fna", "fasta")

>>> record

SeqRecord(seq=Seq(’TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG’,

SingleLetterAlphabet()), id=’gi|45478711|ref|NC_005816.1|’, name=’gi|45478711|ref|NC_005816.1|’,

description=’gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... sequence’,

dbxrefs=[])

Now, let’s have a look at the key attributes of this SeqRecord individually – starting with the seq

attribute which gives you a Seq object:

>>> record.seq

Seq(’TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG’, SingleLetterAlphabet())

Here Bio.SeqIO has defaulted to a generic alphabet, rather than guessing that this is DNA. If you know in
advance what kind of sequence your FASTA file contains, you can tell Bio.SeqIO which alphabet to use (see
Chapter 5).

Next, the identifiers and description:

>>> record.id

’gi|45478711|ref|NC_005816.1|’

>>> record.name

’gi|45478711|ref|NC_005816.1|’

>>> record.description

’gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete sequence’
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As you can see above, the first word of the FASTA record’s title line (after removing the greater than
symbol) is used for both the id and name attributes. The whole title line (after removing the greater than
symbol) is used for the record description. This is deliberate, partly for backwards compatibility reasons,
but it also makes sense if you have a FASTA file like this:

>Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1

TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

...

Note that none of the other annotation attributes get populated when reading a FASTA file:

>>> record.dbxrefs

[]

>>> record.annotations

{}

>>> record.letter_annotations

{}

>>> record.features

[]

In this case our example FASTA file was from the NCBI, and they have a fairly well defined set of
conventions for formatting their FASTA lines. This means it would be possible to parse this information
and extract the GI number and accession for example. However, FASTA files from other sources vary, so
this isn’t possible in general.

4.2.3 SeqRecord objects from GenBank files

As in the previous example, we’re going to look at the whole sequence for Yersinia pestis biovar Microtus
str. 91001 plasmid pPCP1, originally downloaded from the NCBI, but this time as a GenBank file. Again,
this file is included with the Biopython unit tests under the GenBank folder, or online NC 005816.gb from
our website.

This file contains a single record (i.e. only one LOCUS line) and starts:

LOCUS NC_005816 9609 bp DNA circular BCT 21-JUL-2008

DEFINITION Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete

sequence.

ACCESSION NC_005816

VERSION NC_005816.1 GI:45478711

PROJECT GenomeProject:10638

...

Again, we’ll use Bio.SeqIO to read this file in, and the code is almost identical to that for used above
for the FASTA file (see Chapter 5 for details):

>>> from Bio import SeqIO

>>> record = SeqIO.read("NC_005816.gb", "genbank")

>>> record

SeqRecord(seq=Seq(’TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG’,

IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816’,

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,

dbxrefs=[’Project:10638’])

You should be able to spot some differences already! But taking the attributes individually, the sequence
string is the same as before, but this time Bio.SeqIO has been able to automatically assign a more specific
alphabet (see Chapter 5 for details):
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>>> record.seq

Seq(’TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG’, IUPACAmbiguousDNA())

The name comes from the LOCUS line, while the id includes the version suffix. The description comes
from the DEFINITION line:

>>> record.id

’NC_005816.1’

>>> record.name

’NC_005816’

>>> record.description

’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’

GenBank files don’t have any per-letter annotations:

>>> record.letter_annotations

{}

Most of the annotations information gets recorded in the annotations dictionary, for example:

>>> len(record.annotations)

11

>>> record.annotations["source"]

’Yersinia pestis biovar Microtus str. 91001’

The dbxrefs list gets populated from any PROJECT or DBLINK lines:

>>> record.dbxrefs

[’Project:10638’]

Finally, and perhaps most interestingly, all the entries in the features table (e.g. the genes or CDS
features) get recorded as SeqFeature objects in the features list.

>>> len(record.features)

29

We’ll talk about SeqFeature objects next, in Section 4.3.

4.3 Feature, location and position objects

4.3.1 SeqFeature objects

Sequence features are an essential part of describing a sequence. Once you get beyond the sequence itself,
you need some way to organize and easily get at the more “abstract” information that is known about
the sequence. While it is probably impossible to develop a general sequence feature class that will cover
everything, the Biopython SeqFeature class attempts to encapsulate as much of the information about the
sequence as possible. The design is heavily based on the GenBank/EMBL feature tables, so if you understand
how they look, you’ll probably have an easier time grasping the structure of the Biopython classes.

The key idea about each SeqFeature object is to describe a region on a parent sequence, typically a
SeqRecord object. That region is described with a location object, typically a range between two positions
(see Section 4.3.2 below).

The SeqFeature class has a number of attributes, so first we’ll list them and their general features,
and then later in the chapter work through examples to show how this applies to a real life example. The
attributes of a SeqFeature are:
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.type – This is a textual description of the type of feature (for instance, this will be something like ‘CDS’
or ‘gene’).

.location – The location of the SeqFeature on the sequence that you are dealing with, see Section 4.3.2
below. The SeqFeature delegates much of its functionality to the location object, and includes a
number of shortcut attributes for properties of the location:

.ref – shorthand for .location.ref – any (different) reference sequence the location is referring to.
Usually just None.

.ref db – shorthand for .location.ref_db – specifies the database any identifier in .ref refers to.
Usually just None.

.strand – shorthand for .location.strand – the strand on the sequence that the feature is located
on. For double stranded nucleotide sequence this may either be 1 for the top strand, −1 for the
bottom strand, 0 if the strand is important but is unknown, or None if it doesn’t matter. This is
None for proteins, or single stranded sequences.

.qualifiers – This is a Python dictionary of additional information about the feature. The key is some kind
of terse one-word description of what the information contained in the value is about, and the value is
the actual information. For example, a common key for a qualifier might be “evidence” and the value
might be “computational (non-experimental).” This is just a way to let the person who is looking at
the feature know that it has not be experimentally (i. e. in a wet lab) confirmed. Note that other the
value will be a list of strings (even when there is only one string). This is a reflection of the feature
tables in GenBank/EMBL files.

.sub features – This used to be used to represent features with complicated locations like ‘joins’ in Gen-
Bank/EMBL files. This has been deprecated with the introduction of the CompoundLocation object,
and should now be ignored.

4.3.2 Positions and locations

The key idea about each SeqFeature object is to describe a region on a parent sequence, for which we use a
location object, typically describing a range between two positions. Two try to clarify the terminology we’re
using:

position – This refers to a single position on a sequence, which may be fuzzy or not. For instance, 5, 20,
<100 and >200 are all positions.

location – A location is region of sequence bounded by some positions. For instance 5..20 (i. e. 5 to 20) is
a location.

I just mention this because sometimes I get confused between the two.

4.3.2.1 FeatureLocation object

Unless you work with eukaryotic genes, most SeqFeature locations are extremely simple - you just need
start and end coordinates and a strand. That’s essentially all the basic FeatureLocation object does.

In practise of course, things can be more complicated. First of all we have to handle compound locations
made up of several regions. Secondly, the positions themselves may be fuzzy (inexact).

4.3.2.2 CompoundLocation object

Biopython 1.62 introduced the CompoundLocation as part of a restructuring of how complex locations made
up of multiple regions are represented. The main usage is for handling ‘join’ locations in EMBL/GenBank
files.
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4.3.2.3 Fuzzy Positions

So far we’ve only used simple positions. One complication in dealing with feature locations comes in the
positions themselves. In biology many times things aren’t entirely certain (as much as us wet lab biologists
try to make them certain!). For instance, you might do a dinucleotide priming experiment and discover that
the start of mRNA transcript starts at one of two sites. This is very useful information, but the complication
comes in how to represent this as a position. To help us deal with this, we have the concept of fuzzy positions.
Basically there are several types of fuzzy positions, so we have five classes do deal with them:

ExactPosition – As its name suggests, this class represents a position which is specified as exact along
the sequence. This is represented as just a number, and you can get the position by looking at the
position attribute of the object.

BeforePosition – This class represents a fuzzy position that occurs prior to some specified site. In Gen-
Bank/EMBL notation, this is represented as something like ‘<13’, signifying that the real position is
located somewhere less than 13. To get the specified upper boundary, look at the position attribute
of the object.

AfterPosition – Contrary to BeforePosition, this class represents a position that occurs after some spec-
ified site. This is represented in GenBank as ‘>13’, and like BeforePosition, you get the boundary
number by looking at the position attribute of the object.

WithinPosition – Occasionally used for GenBank/EMBL locations, this class models a position which
occurs somewhere between two specified nucleotides. In GenBank/EMBL notation, this would be
represented as ‘(1.5)’, to represent that the position is somewhere within the range 1 to 5. To get the
information in this class you have to look at two attributes. The position attribute specifies the lower
boundary of the range we are looking at, so in our example case this would be one. The extension

attribute specifies the range to the higher boundary, so in this case it would be 4. So object.position

is the lower boundary and object.position + object.extension is the upper boundary.

OneOfPosition – Occasionally used for GenBank/EMBL locations, this class deals with a position where
several possible values exist, for instance you could use this if the start codon was unclear and there
where two candidates for the start of the gene. Alternatively, that might be handled explicitly as two
related gene features.

UnknownPosition – This class deals with a position of unknown location. This is not used in Gen-
Bank/EMBL, but corresponds to the ‘?’ feature coordinate used in UniProt.

Here’s an example where we create a location with fuzzy end points:

>>> from Bio import SeqFeature

>>> start_pos = SeqFeature.AfterPosition(5)

>>> end_pos = SeqFeature.BetweenPosition(9, left=8, right=9)

>>> my_location = SeqFeature.FeatureLocation(start_pos, end_pos)

Note that the details of some of the fuzzy-locations changed in Biopython 1.59, in particular for Between-
Position and WithinPosition you must now make it explicit which integer position should be used for slicing
etc. For a start position this is generally the lower (left) value, while for an end position this would generally
be the higher (right) value.

If you print out a FeatureLocation object, you can get a nice representation of the information:

>>> print(my_location)

[>5:(8^9)]

We can access the fuzzy start and end positions using the start and end attributes of the location:
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>>> my_location.start

AfterPosition(5)

>>> print(my_location.start)

>5

>>> my_location.end

BetweenPosition(9, left=8, right=9)

>>> print(my_location.end)

(8^9)

If you don’t want to deal with fuzzy positions and just want numbers, they are actually subclasses of
integers so should work like integers:

>>> int(my_location.start)

5

>>> int(my_location.end)

9

For compatibility with older versions of Biopython you can ask for the nofuzzy_start and nofuzzy_end

attributes of the location which are plain integers:

>>> my_location.nofuzzy_start

5

>>> my_location.nofuzzy_end

9

Notice that this just gives you back the position attributes of the fuzzy locations.
Similarly, to make it easy to create a position without worrying about fuzzy positions, you can just pass

in numbers to the FeaturePosition constructors, and you’ll get back out ExactPosition objects:

>>> exact_location = SeqFeature.FeatureLocation(5, 9)

>>> print(exact_location)

[5:9]

>>> exact_location.start

ExactPosition(5)

>>> int(exact_location.start)

5

>>> exact_location.nofuzzy_start

5

That is most of the nitty gritty about dealing with fuzzy positions in Biopython. It has been designed
so that dealing with fuzziness is not that much more complicated than dealing with exact positions, and
hopefully you find that true!

4.3.2.4 Location testing

You can use the Python keyword in with a SeqFeature or location object to see if the base/residue for a
parent coordinate is within the feature/location or not.

For example, suppose you have a SNP of interest and you want to know which features this SNP is
within, and lets suppose this SNP is at index 4350 (Python counting!). Here is a simple brute force solution
where we just check all the features one by one in a loop:

>>> from Bio import SeqIO

>>> my_snp = 4350

>>> record = SeqIO.read("NC_005816.gb", "genbank")
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>>> for feature in record.features:

... if my_snp in feature:

... print("%s %s" % (feature.type, feature.qualifiers.get("db_xref")))

...

source [’taxon:229193’]

gene [’GeneID:2767712’]

CDS [’GI:45478716’, ’GeneID:2767712’]

Note that gene and CDS features from GenBank or EMBL files defined with joins are the union of the
exons – they do not cover any introns.

4.3.3 Sequence described by a feature or location

A SeqFeature or location object doesn’t directly contain a sequence, instead the location (see Section 4.3.2)
describes how to get this from the parent sequence. For example consider a (short) gene sequence with
location 5:18 on the reverse strand, which in GenBank/EMBL notation using 1-based counting would be
complement(6..18), like this:

>>> from Bio.Seq import Seq

>>> from Bio.SeqFeature import SeqFeature, FeatureLocation

>>> example_parent = Seq("ACCGAGACGGCAAAGGCTAGCATAGGTATGAGACTTCCTTCCTGCCAGTGCTGAGGAACTGGGAGCCTAC")

>>> example_feature = SeqFeature(FeatureLocation(5, 18), type="gene", strand=-1)

You could take the parent sequence, slice it to extract 5:18, and then take the reverse complement. If
you are using Biopython 1.59 or later, the feature location’s start and end are integer like so this works:

>>> feature_seq = example_parent[example_feature.location.start:example_feature.location.end].reverse_complement()

>>> print(feature_seq)

AGCCTTTGCCGTC

This is a simple example so this isn’t too bad – however once you have to deal with compound features
(joins) this is rather messy. Instead, the SeqFeature object has an extract method to take care of all this:

>>> feature_seq = example_feature.extract(example_parent)

>>> print(feature_seq)

AGCCTTTGCCGTC

The length of a SeqFeature or location matches that of the region of sequence it describes.

>>> print(example_feature.extract(example_parent))

AGCCTTTGCCGTC

>>> print(len(example_feature.extract(example_parent)))

13

>>> print(len(example_feature))

13

>>> print(len(example_feature.location))

13

For simple FeatureLocation objects the length is just the difference between the start and end positions.
However, for a CompoundLocation the length is the sum of the constituent regions.
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4.4 Comparison

The SeqRecord objects can be very complex, but here’s a simple example:

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> record1 = SeqRecord(Seq("ACGT"), id="test")

>>> record2 = SeqRecord(Seq("ACGT"), id="test")

What happens when you try to compare these “identical” records?

>>> record1 == record2

...

Perhaps surprisingly older versions of Biopython would use Python’s default object comparison for the
SeqRecord, meaning record1 == record2 would only return True if these variables pointed at the same
object in memory. In this example, record1 == record2 would have returned False here!

>>> record1 == record2 # on old versions of Biopython!

False

As of Biopython 1.67, SeqRecord comparison like record1 == record2 will instead raise an explicit
error to avoid people being caught out by this:

>>> record1 == record2

Traceback (most recent call last):

...

NotImplementedError: SeqRecord comparison is deliberately not implemented. Explicitly compare the attributes of interest.

Instead you should check the attributes you are interested in, for example the identifier and the sequence:

>>> record1.id == record2.id

True

>>> record1.seq == record2.seq

True

Beware that comparing complex objects quickly gets complicated (see also Section 3.11).

4.5 References

Another common annotation related to a sequence is a reference to a journal or other published work
dealing with the sequence. We have a fairly simple way of representing a Reference in Biopython – we have
a Bio.SeqFeature.Reference class that stores the relevant information about a reference as attributes of
an object.

The attributes include things that you would expect to see in a reference like journal, title and
authors. Additionally, it also can hold the medline_id and pubmed_id and a comment about the reference.
These are all accessed simply as attributes of the object.

A reference also has a location object so that it can specify a particular location on the sequence that
the reference refers to. For instance, you might have a journal that is dealing with a particular gene located
on a BAC, and want to specify that it only refers to this position exactly. The location is a potentially
fuzzy location, as described in section 4.3.2.

Any reference objects are stored as a list in the SeqRecord object’s annotations dictionary under the
key “references”. That’s all there is too it. References are meant to be easy to deal with, and hopefully
general enough to cover lots of usage cases.
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4.6 The format method

The format() method of the SeqRecord class gives a string containing your record formatted using one of
the output file formats supported by Bio.SeqIO, such as FASTA:

from Bio.Seq import Seq

from Bio.SeqRecord import SeqRecord

from Bio.Alphabet import generic_protein

record = SeqRecord(

Seq(

"MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD"

"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK"

"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM"

"SSAC",

generic_protein,

),

id="gi|14150838|gb|AAK54648.1|AF376133_1",

description="chalcone synthase [Cucumis sativus]",

)

print(record.format("fasta"))

which should give:

>gi|14150838|gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]

MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD

GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK

NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM

SSAC

This format method takes a single mandatory argument, a lower case string which is supported by
Bio.SeqIO as an output format (see Chapter 5). However, some of the file formats Bio.SeqIO can write to
require more than one record (typically the case for multiple sequence alignment formats), and thus won’t
work via this format() method. See also Section 5.5.4.

4.7 Slicing a SeqRecord

You can slice a SeqRecord, to give you a new SeqRecord covering just part of the sequence. What is
important here is that any per-letter annotations are also sliced, and any features which fall completely
within the new sequence are preserved (with their locations adjusted).

For example, taking the same GenBank file used earlier:

>>> from Bio import SeqIO

>>> record = SeqIO.read("NC_005816.gb", "genbank")

>>> record

SeqRecord(seq=Seq(’TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG’,

IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816’,

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence’,

dbxrefs=[’Project:58037’])
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>>> len(record)

9609

>>> len(record.features)

41

For this example we’re going to focus in on the pim gene, YP_pPCP05. If you have a look at the GenBank
file directly you’ll find this gene/CDS has location string 4343..4780, or in Python counting 4342:4780.
From looking at the file you can work out that these are the twelfth and thirteenth entries in the file, so in
Python zero-based counting they are entries 11 and 12 in the features list:

>>> print(record.features[20])

type: gene

location: [4342:4780](+)

qualifiers:

Key: db_xref, Value: [’GeneID:2767712’]

Key: gene, Value: [’pim’]

Key: locus_tag, Value: [’YP_pPCP05’]

<BLANKLINE>

>>> print(record.features[21])

type: CDS

location: [4342:4780](+)

qualifiers:

Key: codon_start, Value: [’1’]

Key: db_xref, Value: [’GI:45478716’, ’GeneID:2767712’]

Key: gene, Value: [’pim’]

Key: locus_tag, Value: [’YP_pPCP05’]

Key: note, Value: [’similar to many previously sequenced pesticin immunity ...’]

Key: product, Value: [’pesticin immunity protein’]

Key: protein_id, Value: [’NP_995571.1’]

Key: transl_table, Value: [’11’]

Key: translation, Value: [’MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILQNLELNTFGNSLSH...’]

Let’s slice this parent record from 4300 to 4800 (enough to include the pim gene/CDS), and see how
many features we get:

>>> sub_record = record[4300:4800]

>>> sub_record

SeqRecord(seq=Seq(’ATAAATAGATTATTCCAAATAATTTATTTATGTAAGAACAGGATGGGAGGGGGA...TTA’,

IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816’,

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,

dbxrefs=[])

>>> len(sub_record)

500

>>> len(sub_record.features)

2

Our sub-record just has two features, the gene and CDS entries for YP_pPCP05:

>>> print(sub_record.features[0])

type: gene

location: [42:480](+)
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qualifiers:

Key: db_xref, Value: [’GeneID:2767712’]

Key: gene, Value: [’pim’]

Key: locus_tag, Value: [’YP_pPCP05’]

<BLANKLINE>

>>> print(sub_record.features[1])

type: CDS

location: [42:480](+)

qualifiers:

Key: codon_start, Value: [’1’]

Key: db_xref, Value: [’GI:45478716’, ’GeneID:2767712’]

Key: gene, Value: [’pim’]

Key: locus_tag, Value: [’YP_pPCP05’]

Key: note, Value: [’similar to many previously sequenced pesticin immunity ...’]

Key: product, Value: [’pesticin immunity protein’]

Key: protein_id, Value: [’NP_995571.1’]

Key: transl_table, Value: [’11’]

Key: translation, Value: [’MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILQNLELNTFGNSLSH...’]

Notice that their locations have been adjusted to reflect the new parent sequence!
While Biopython has done something sensible and hopefully intuitive with the features (and any per-

letter annotation), for the other annotation it is impossible to know if this still applies to the sub-sequence
or not. To avoid guessing, the annotations and dbxrefs are omitted from the sub-record, and it is up to
you to transfer any relevant information as appropriate.

>>> sub_record.annotations

{}

>>> sub_record.dbxrefs

[]

The same point could be made about the record id, name and description, but for practicality these
are preserved:

>>> sub_record.id

’NC_005816.1’

>>> sub_record.name

’NC_005816’

>>> sub_record.description

’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence’

This illustrates the problem nicely though, our new sub-record is not the complete sequence of the plasmid,
so the description is wrong! Let’s fix this and then view the sub-record as a reduced GenBank file using the
format method described above in Section 4.6:

>>> sub_record.description = "Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, partial."

>>> print(sub_record.format("genbank"))

...

See Sections 20.1.7 and 20.1.8 for some FASTQ examples where the per-letter annotations (the read
quality scores) are also sliced.
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4.8 Adding SeqRecord objects

You can add SeqRecord objects together, giving a new SeqRecord. What is important here is that any
common per-letter annotations are also added, all the features are preserved (with their locations adjusted),
and any other common annotation is also kept (like the id, name and description).

For an example with per-letter annotation, we’ll use the first record in a FASTQ file. Chapter 5 will
explain the SeqIO functions:

>>> from Bio import SeqIO

>>> record = next(SeqIO.parse("example.fastq", "fastq"))

>>> len(record)

25

>>> print(record.seq)

CCCTTCTTGTCTTCAGCGTTTCTCC

>>> print(record.letter_annotations["phred_quality"])

[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26,

26, 26, 26, 23, 23]

Let’s suppose this was Roche 454 data, and that from other information you think the TTT should be only
TT. We can make a new edited record by first slicing the SeqRecord before and after the “extra” third T:

>>> left = record[:20]

>>> print(left.seq)

CCCTTCTTGTCTTCAGCGTT

>>> print(left.letter_annotations["phred_quality"])

[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26]

>>> right = record[21:]

>>> print(right.seq)

CTCC

>>> print(right.letter_annotations["phred_quality"])

[26, 26, 23, 23]

Now add the two parts together:

>>> edited = left + right

>>> len(edited)

24

>>> print(edited.seq)

CCCTTCTTGTCTTCAGCGTTCTCC

>>> print(edited.letter_annotations["phred_quality"])

[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26,

26, 26, 23, 23]

Easy and intuitive? We hope so! You can make this shorter with just:

>>> edited = record[:20] + record[21:]

Now, for an example with features, we’ll use a GenBank file. Suppose you have a circular genome:

>>> from Bio import SeqIO

>>> record = SeqIO.read("NC_005816.gb", "genbank")
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>>> record

SeqRecord(seq=Seq(’TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG’,

IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816’,

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,

dbxrefs=[’Project:10638’])

>>> len(record)

9609

>>> len(record.features)

41

>>> record.dbxrefs

[’Project:58037’]

>>> record.annotations.keys()

[’comment’, ’sequence_version’, ’source’, ’taxonomy’, ’keywords’, ’references’,

’accessions’, ’data_file_division’, ’date’, ’organism’, ’gi’]

You can shift the origin like this:

>>> shifted = record[2000:] + record[:2000]

>>> shifted

SeqRecord(seq=Seq(’GATACGCAGTCATATTTTTTACACAATTCTCTAATCCCGACAAGGTCGTAGGTC...GGA’,

IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816’,

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,

dbxrefs=[])

>>> len(shifted)

9609

Note that this isn’t perfect in that some annotation like the database cross references and one of the
features (the source feature) have been lost:

>>> len(shifted.features)

40

>>> shifted.dbxrefs

[]

>>> shifted.annotations.keys()

[]

This is because the SeqRecord slicing step is cautious in what annotation it preserves (erroneously
propagating annotation can cause major problems). If you want to keep the database cross references or the
annotations dictionary, this must be done explicitly:

>>> shifted.dbxrefs = record.dbxrefs[:]

>>> shifted.annotations = record.annotations.copy()

>>> shifted.dbxrefs

[’Project:10638’]

>>> shifted.annotations.keys()

[’comment’, ’sequence_version’, ’source’, ’taxonomy’, ’keywords’, ’references’,

’accessions’, ’data_file_division’, ’date’, ’organism’, ’gi’]

Also note that in an example like this, you should probably change the record identifiers since the NCBI
references refer to the original unmodified sequence.
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4.9 Reverse-complementing SeqRecord objects

One of the new features in Biopython 1.57 was the SeqRecord object’s reverse_complement method. This
tries to balance easy of use with worries about what to do with the annotation in the reverse complemented
record.

For the sequence, this uses the Seq object’s reverse complement method. Any features are transferred with
the location and strand recalculated. Likewise any per-letter-annotation is also copied but reversed (which
makes sense for typical examples like quality scores). However, transfer of most annotation is problematical.

For instance, if the record ID was an accession, that accession should not really apply to the reverse
complemented sequence, and transferring the identifier by default could easily cause subtle data corruption
in downstream analysis. Therefore by default, the SeqRecord’s id, name, description, annotations and
database cross references are all not transferred by default.

The SeqRecord object’s reverse_complement method takes a number of optional arguments correspond-
ing to properties of the record. Setting these arguments to True means copy the old values, while False

means drop the old values and use the default value. You can alternatively provide the new desired value
instead.

Consider this example record:

>>> from Bio import SeqIO

>>> record = SeqIO.read("NC_005816.gb", "genbank")

>>> print("%s %i %i %i %i" % (record.id, len(record), len(record.features), len(record.dbxrefs), len(record.annotations)))

NC_005816.1 9609 41 1 13

Here we take the reverse complement and specify a new identifier – but notice how most of the annotation
is dropped (but not the features):

>>> rc = record.reverse_complement(id="TESTING")

>>> print("%s %i %i %i %i" % (rc.id, len(rc), len(rc.features), len(rc.dbxrefs), len(rc.annotations)))

TESTING 9609 41 0 0
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Chapter 5

Sequence Input/Output

In this chapter we’ll discuss in more detail the Bio.SeqIO module, which was briefly introduced in Chapter 2
and also used in Chapter 4. This aims to provide a simple interface for working with assorted sequence file
formats in a uniform way. See also the Bio.SeqIO wiki page (http://biopython.org/wiki/SeqIO), and
the built in documentation (also online):

>>> from Bio import SeqIO

>>> help(SeqIO)

...

The “catch” is that you have to work with SeqRecord objects (see Chapter 4), which contain a Seq

object (see Chapter 3) plus annotation like an identifier and description. Note that when dealing with very
large FASTA or FASTQ files, the overhead of working with all these objects can make scripts too slow. In
this case consider the low-level SimpleFastaParser and FastqGeneralIterator parsers which return just
a tuple of strings for each record (see Section 5.6).

5.1 Parsing or Reading Sequences

The workhorse function Bio.SeqIO.parse() is used to read in sequence data as SeqRecord objects. This
function expects two arguments:

1. The first argument is a handle to read the data from, or a filename. A handle is typically a file opened
for reading, but could be the output from a command line program, or data downloaded from the
internet (see Section 5.3). See Section 24.1 for more about handles.

2. The second argument is a lower case string specifying sequence format – we don’t try and guess the
file format for you! See http://biopython.org/wiki/SeqIO for a full listing of supported formats.

There is an optional argument alphabet to specify the alphabet to be used. This is useful for file formats
like FASTA where otherwise Bio.SeqIO will default to a generic alphabet.

The Bio.SeqIO.parse() function returns an iterator which gives SeqRecord objects. Iterators are
typically used in a for loop as shown below.

Sometimes you’ll find yourself dealing with files which contain only a single record. For this situation
use the function Bio.SeqIO.read() which takes the same arguments. Provided there is one and only one
record in the file, this is returned as a SeqRecord object. Otherwise an exception is raised.
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5.1.1 Reading Sequence Files

In general Bio.SeqIO.parse() is used to read in sequence files as SeqRecord objects, and is typically used
with a for loop like this:

from Bio import SeqIO

for seq_record in SeqIO.parse("ls_orchid.fasta", "fasta"):

print(seq_record.id)

print(repr(seq_record.seq))

print(len(seq_record))

The above example is repeated from the introduction in Section 2.4, and will load the orchid DNA
sequences in the FASTA format file ls orchid.fasta. If instead you wanted to load a GenBank format file like
ls orchid.gbk then all you need to do is change the filename and the format string:

from Bio import SeqIO

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank"):

print(seq_record.id)

print(repr(seq_record.seq))

print(len(seq_record))

Similarly, if you wanted to read in a file in another file format, then assuming Bio.SeqIO.parse()

supports it you would just need to change the format string as appropriate, for example “swiss” for SwissProt
files or “embl” for EMBL text files. There is a full listing on the wiki page (http://biopython.org/wiki/
SeqIO) and in the built in documentation (also online).

Another very common way to use a Python iterator is within a list comprehension (or a generator
expression). For example, if all you wanted to extract from the file was a list of the record identifiers we can
easily do this with the following list comprehension:

>>> from Bio import SeqIO

>>> identifiers = [seq_record.id for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank")]

>>> identifiers

[’Z78533.1’, ’Z78532.1’, ’Z78531.1’, ’Z78530.1’, ’Z78529.1’, ’Z78527.1’, ..., ’Z78439.1’]

There are more examples using SeqIO.parse() in a list comprehension like this in Section 20.2 (e.g. for
plotting sequence lengths or GC%).

5.1.2 Iterating over the records in a sequence file

In the above examples, we have usually used a for loop to iterate over all the records one by one. You can use
the for loop with all sorts of Python objects (including lists, tuples and strings) which support the iteration
interface.

The object returned by Bio.SeqIO is actually an iterator which returns SeqRecord objects. You get to
see each record in turn, but once and only once. The plus point is that an iterator can save you memory
when dealing with large files.

Instead of using a for loop, can also use the next() function on an iterator to step through the entries,
like this:

from Bio import SeqIO

record_iterator = SeqIO.parse("ls_orchid.fasta", "fasta")
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first_record = next(record_iterator)

print(first_record.id)

print(first_record.description)

second_record = next(record_iterator)

print(second_record.id)

print(second_record.description)

Note that if you try to use next() and there are no more results, you’ll get the special StopIteration
exception.

One special case to consider is when your sequence files have multiple records, but you only want the
first one. In this situation the following code is very concise:

from Bio import SeqIO

first_record = next(SeqIO.parse("ls_orchid.gbk", "genbank"))

A word of warning here – using the next() function like this will silently ignore any additional records
in the file. If your files have one and only one record, like some of the online examples later in this chapter,
or a GenBank file for a single chromosome, then use the new Bio.SeqIO.read() function instead. This will
check there are no extra unexpected records present.

5.1.3 Getting a list of the records in a sequence file

In the previous section we talked about the fact that Bio.SeqIO.parse() gives you a SeqRecord iterator,
and that you get the records one by one. Very often you need to be able to access the records in any order.
The Python list data type is perfect for this, and we can turn the record iterator into a list of SeqRecord
objects using the built-in Python function list() like so:

from Bio import SeqIO

records = list(SeqIO.parse("ls_orchid.gbk", "genbank"))

print("Found %i records" % len(records))

print("The last record")

last_record = records[-1] # using Python’s list tricks

print(last_record.id)

print(repr(last_record.seq))

print(len(last_record))

print("The first record")

first_record = records[0] # remember, Python counts from zero

print(first_record.id)

print(repr(first_record.seq))

print(len(first_record))

Giving:

Found 94 records

The last record

Z78439.1

Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT...GCC’, IUPACAmbiguousDNA())
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592

The first record

Z78533.1

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC’, IUPACAmbiguousDNA())

740

You can of course still use a for loop with a list of SeqRecord objects. Using a list is much more flexible
than an iterator (for example, you can determine the number of records from the length of the list), but
does need more memory because it will hold all the records in memory at once.

5.1.4 Extracting data

The SeqRecord object and its annotation structures are described more fully in Chapter 4. As an example
of how annotations are stored, we’ll look at the output from parsing the first record in the GenBank file
ls orchid.gbk.

from Bio import SeqIO

record_iterator = SeqIO.parse("ls_orchid.gbk", "genbank")

first_record = next(record_iterator)

print(first_record)

That should give something like this:

ID: Z78533.1

Name: Z78533

Description: C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.

Number of features: 5

/sequence_version=1

/source=Cypripedium irapeanum

/taxonomy=[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ..., ’Cypripedium’]

/keywords=[’5.8S ribosomal RNA’, ’5.8S rRNA gene’, ..., ’ITS1’, ’ITS2’]

/references=[...]

/accessions=[’Z78533’]

/data_file_division=PLN

/date=30-NOV-2006

/organism=Cypripedium irapeanum

/gi=2765658

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC’, IUPACAmbiguousDNA())

This gives a human readable summary of most of the annotation data for the SeqRecord. For this
example we’re going to use the .annotations attribute which is just a Python dictionary. The contents
of this annotations dictionary were shown when we printed the record above. You can also print them out
directly:

print(first_record.annotations)

Like any Python dictionary, you can easily get a list of the keys:

print(first_record.annotations.keys())

or values:

print(first_record.annotations.values())
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In general, the annotation values are strings, or lists of strings. One special case is any references in the
file get stored as reference objects.

Suppose you wanted to extract a list of the species from the ls orchid.gbk GenBank file. The information
we want, Cypripedium irapeanum, is held in the annotations dictionary under ‘source’ and ‘organism’, which
we can access like this:

>>> print(first_record.annotations["source"])

Cypripedium irapeanum

or:

>>> print(first_record.annotations["organism"])

Cypripedium irapeanum

In general, ‘organism’ is used for the scientific name (in Latin, e.g. Arabidopsis thaliana), while ‘source’
will often be the common name (e.g. thale cress). In this example, as is often the case, the two fields are
identical.

Now let’s go through all the records, building up a list of the species each orchid sequence is from:

from Bio import SeqIO

all_species = []

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank"):

all_species.append(seq_record.annotations["organism"])

print(all_species)

Another way of writing this code is to use a list comprehension:

from Bio import SeqIO

all_species = [

seq_record.annotations["organism"]

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank")

]

print(all_species)

In either case, the result is:

[’Cypripedium irapeanum’, ’Cypripedium californicum’, ..., ’Paphiopedilum barbatum’]

Great. That was pretty easy because GenBank files are annotated in a standardised way.
Now, let’s suppose you wanted to extract a list of the species from a FASTA file, rather than the

GenBank file. The bad news is you will have to write some code to extract the data you want from the
record’s description line - if the information is in the file in the first place! Our example FASTA format file
ls orchid.fasta starts like this:

>gi|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA

CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG

AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG

...

You can check by hand, but for every record the species name is in the description line as the second
word. This means if we break up each record’s .description at the spaces, then the species is there as field
number one (field zero is the record identifier). That means we can do this:
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from Bio import SeqIO

all_species = []

for seq_record in SeqIO.parse("ls_orchid.fasta", "fasta"):

all_species.append(seq_record.description.split()[1])

print(all_species)

This gives:

[’C.irapeanum’, ’C.californicum’, ’C.fasciculatum’, ’C.margaritaceum’, ..., ’P.barbatum’]

The concise alternative using list comprehensions would be:

from Bio import SeqIO

all_species == [

seq_record.description.split()[1]

for seq_record in SeqIO.parse("ls_orchid.fasta", "fasta")

]

print(all_species)

In general, extracting information from the FASTA description line is not very nice. If you can get your
sequences in a well annotated file format like GenBank or EMBL, then this sort of annotation information
is much easier to deal with.

5.1.5 Modifying data

In the previous section, we demonstrated how to extract data from a SeqRecord. Another common task is
to alter this data. The attributes of a SeqRecord can be modified directly, for example:

>>> from Bio import SeqIO

>>> record_iterator = SeqIO.parse("ls_orchid.fasta", "fasta")

>>> first_record = next(record_iterator)

>>> first_record.id

’gi|2765658|emb|Z78533.1|CIZ78533’

>>> first_record.id = "new_id"

>>> first_record.id

’new_id’

Note, if you want to change the way FASTA is output when written to a file (see Section 5.5), then
you should modify both the id and description attributes. To ensure the correct behaviour, it is best to
include the id plus a space at the start of the desired description:

>>> from Bio import SeqIO

>>> record_iterator = SeqIO.parse("ls_orchid.fasta", "fasta")

>>> first_record = next(record_iterator)

>>> first_record.id = "new_id"

>>> first_record.description = first_record.id + " " + "desired new description"

>>> print(first_record.format("fasta")[:200])

>new_id desired new description

CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAA

CGATCGAGTGAATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGT

GACCCTGATTTGTTGTTGGGCCGCCTCGGGAGCGTCCATGGCGGGT
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5.2 Parsing sequences from compressed files

In the previous section, we looked at parsing sequence data from a file. Instead of using a filename, you
can give Bio.SeqIO a handle (see Section 24.1), and in this section we’ll use handles to parse sequence from
compressed files.

As you’ll have seen above, we can use Bio.SeqIO.read() or Bio.SeqIO.parse() with a filename - for
instance this quick example calculates the total length of the sequences in a multiple record GenBank file
using a generator expression:

>>> from Bio import SeqIO

>>> print(sum(len(r) for r in SeqIO.parse("ls_orchid.gbk", "gb")))

67518

Here we use a file handle instead, using the with statement to close the handle automatically:

>>> from Bio import SeqIO

>>> with open("ls_orchid.gbk") as handle:

... print(sum(len(r) for r in SeqIO.parse(handle, "gb")))

67518

Or, the old fashioned way where you manually close the handle:

>>> from Bio import SeqIO

>>> handle = open("ls_orchid.gbk")

>>> print(sum(len(r) for r in SeqIO.parse(handle, "gb")))

67518

>>> handle.close()

Now, suppose we have a gzip compressed file instead? These are very commonly used on Linux. We can
use Python’s gzip module to open the compressed file for reading - which gives us a handle object:

>>> import gzip

>>> from Bio import SeqIO

>>> with gzip.open("ls_orchid.gbk.gz", "rt") as handle:

... print(sum(len(r) for r in SeqIO.parse(handle, "gb")))

...

67518

Similarly if we had a bzip2 compressed file (sadly the function name isn’t quite as consistent under
Python 2):

>>> import bz2

>>> from Bio import SeqIO

>>> if hasattr(bz2, "open"):

... handle = bz2.open("ls_orchid.gbk.bz2", "rt") # Python 3

... else:

... handle = bz2.BZ2File("ls_orchid.gbk.bz2", "r") # Python 2

...

>>> with handle:

... print(sum(len(r) for r in SeqIO.parse(handle, "gb")))

...

67518

There is a gzip (GNU Zip) variant called BGZF (Blocked GNU Zip Format), which can be treated like
an ordinary gzip file for reading, but has advantages for random access later which we’ll talk about later in
Section 5.4.4.
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5.3 Parsing sequences from the net

In the previous sections, we looked at parsing sequence data from a file (using a filename or handle), and
from compressed files (using a handle). Here we’ll use Bio.SeqIO with another type of handle, a network
connection, to download and parse sequences from the internet.

Note that just because you can download sequence data and parse it into a SeqRecord object in one go
doesn’t mean this is a good idea. In general, you should probably download sequences once and save them
to a file for reuse.

5.3.1 Parsing GenBank records from the net

Section 9.6 talks about the Entrez EFetch interface in more detail, but for now let’s just connect to the
NCBI and get a few Opuntia (prickly-pear) sequences from GenBank using their GI numbers.

First of all, let’s fetch just one record. If you don’t care about the annotations and features downloading
a FASTA file is a good choice as these are compact. Now remember, when you expect the handle to contain
one and only one record, use the Bio.SeqIO.read() function:

from Bio import Entrez

from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"

with Entrez.efetch(

db="nucleotide", rettype="fasta", retmode="text", id="6273291"

) as handle:

seq_record = SeqIO.read(handle, "fasta")

print("%s with %i features" % (seq_record.id, len(seq_record.features)))

Expected output:

gi|6273291|gb|AF191665.1|AF191665 with 0 features

The NCBI will also let you ask for the file in other formats, in particular as a GenBank file. Until Easter
2009, the Entrez EFetch API let you use “genbank” as the return type, however the NCBI now insist on
using the official return types of “gb” (or “gp” for proteins) as described on EFetch for Sequence and other
Molecular Biology Databases. As a result, in Biopython 1.50 onwards, we support “gb” as an alias for
“genbank” in Bio.SeqIO.

from Bio import Entrez

from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"

with Entrez.efetch(

db="nucleotide", rettype="gb", retmode="text", id="6273291"

) as handle:

seq_record = SeqIO.read(handle, "gb") # using "gb" as an alias for "genbank"

print("%s with %i features" % (seq_record.id, len(seq_record.features)))

The expected output of this example is:

AF191665.1 with 3 features

Notice this time we have three features.
Now let’s fetch several records. This time the handle contains multiple records, so we must use the

Bio.SeqIO.parse() function:

57

https://www.ncbi.nlm.nih.gov/books/NBK3837/
https://www.ncbi.nlm.nih.gov/books/NBK3837/


from Bio import Entrez

from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"

with Entrez.efetch(

db="nucleotide", rettype="gb", retmode="text", id="6273291,6273290,6273289"

) as handle:

for seq_record in SeqIO.parse(handle, "gb"):

print("%s %s..." % (seq_record.id, seq_record.description[:50]))

print(

"Sequence length %i, %i features, from: %s"

% (

len(seq_record),

len(seq_record.features),

seq_record.annotations["source"],

)

)

That should give the following output:

AF191665.1 Opuntia marenae rpl16 gene; chloroplast gene for c...

Sequence length 902, 3 features, from: chloroplast Opuntia marenae

AF191664.1 Opuntia clavata rpl16 gene; chloroplast gene for c...

Sequence length 899, 3 features, from: chloroplast Grusonia clavata

AF191663.1 Opuntia bradtiana rpl16 gene; chloroplast gene for...

Sequence length 899, 3 features, from: chloroplast Opuntia bradtianaa

See Chapter 9 for more about the Bio.Entrez module, and make sure to read about the NCBI guidelines
for using Entrez (Section 9.1).

5.3.2 Parsing SwissProt sequences from the net

Now let’s use a handle to download a SwissProt file from ExPASy, something covered in more depth in
Chapter 10. As mentioned above, when you expect the handle to contain one and only one record, use the
Bio.SeqIO.read() function:

from Bio import ExPASy

from Bio import SeqIO

with ExPASy.get_sprot_raw("O23729") as handle:

seq_record = SeqIO.read(handle, "swiss")

print(seq_record.id)

print(seq_record.name)

print(seq_record.description)

print(repr(seq_record.seq))

print("Length %i" % len(seq_record))

print(seq_record.annotations["keywords"])

Assuming your network connection is OK, you should get back:

O23729

CHS3_BROFI

RecName: Full=Chalcone synthase 3; EC=2.3.1.74; AltName: Full=Naringenin-chalcone synthase 3;
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Seq(’MAPAMEEIRQAQRAEGPAAVLAIGTSTPPNALYQADYPDYYFRITKSEHLTELK...GAE’, ProteinAlphabet())

Length 394

[’Acyltransferase’, ’Flavonoid biosynthesis’, ’Transferase’]

5.4 Sequence files as Dictionaries

We’re now going to introduce three related functions in the Bio.SeqIO module which allow dictionary like
random access to a multi-sequence file. There is a trade off here between flexibility and memory usage. In
summary:

• Bio.SeqIO.to_dict() is the most flexible but also the most memory demanding option (see Sec-
tion 5.4.1). This is basically a helper function to build a normal Python dictionary with each entry
held as a SeqRecord object in memory, allowing you to modify the records.

• Bio.SeqIO.index() is a useful middle ground, acting like a read only dictionary and parsing sequences
into SeqRecord objects on demand (see Section 5.4.2).

• Bio.SeqIO.index_db() also acts like a read only dictionary but stores the identifiers and file offsets in a
file on disk (as an SQLite3 database), meaning it has very low memory requirements (see Section 5.4.3),
but will be a little bit slower.

See the discussion for an broad overview (Section 5.4.5).

5.4.1 Sequence files as Dictionaries – In memory

The next thing that we’ll do with our ubiquitous orchid files is to show how to index them and access
them like a database using the Python dictionary data type (like a hash in Perl). This is very useful for
moderately large files where you only need to access certain elements of the file, and makes for a nice quick
’n dirty database. For dealing with larger files where memory becomes a problem, see Section 5.4.2 below.

You can use the function Bio.SeqIO.to_dict() to make a SeqRecord dictionary (in memory). By default
this will use each record’s identifier (i.e. the .id attribute) as the key. Let’s try this using our GenBank file:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.to_dict(SeqIO.parse("ls_orchid.gbk", "genbank"))

There is just one required argument for Bio.SeqIO.to_dict(), a list or generator giving SeqRecord

objects. Here we have just used the output from the SeqIO.parse function. As the name suggests, this
returns a Python dictionary.

Since this variable orchid_dict is an ordinary Python dictionary, we can look at all of the keys we have
available:

>>> len(orchid_dict)

94

>>> list(orchid_dict.keys())

[’Z78484.1’, ’Z78464.1’, ’Z78455.1’, ’Z78442.1’, ’Z78532.1’, ’Z78453.1’, ..., ’Z78471.1’]

You can leave out the “list(...)“ bit if you are still using Python 2. Under Python 3 the dictionary
methods like “.keys()“ and “.values()“ are iterators rather than lists.

If you really want to, you can even look at all the records at once:

>>> list(orchid_dict.values()) #lots of output!

...

We can access a single SeqRecord object via the keys and manipulate the object as normal:

59



>>> seq_record = orchid_dict["Z78475.1"]

>>> print(seq_record.description)

P.supardii 5.8S rRNA gene and ITS1 and ITS2 DNA

>>> print(repr(seq_record.seq))

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GGT’, IUPACAmbiguousDNA())

So, it is very easy to create an in memory “database” of our GenBank records. Next we’ll try this for
the FASTA file instead.

Note that those of you with prior Python experience should all be able to construct a dictionary like this
“by hand”. However, typical dictionary construction methods will not deal with the case of repeated keys
very nicely. Using the Bio.SeqIO.to_dict() will explicitly check for duplicate keys, and raise an exception
if any are found.

5.4.1.1 Specifying the dictionary keys

Using the same code as above, but for the FASTA file instead:

from Bio import SeqIO

orchid_dict = SeqIO.to_dict(SeqIO.parse("ls_orchid.fasta", "fasta"))

print(orchid_dict.keys())

This time the keys are:

[’gi|2765596|emb|Z78471.1|PDZ78471’, ’gi|2765646|emb|Z78521.1|CCZ78521’, ...

..., ’gi|2765613|emb|Z78488.1|PTZ78488’, ’gi|2765583|emb|Z78458.1|PHZ78458’]

You should recognise these strings from when we parsed the FASTA file earlier in Section 2.4.1. Suppose
you would rather have something else as the keys - like the accession numbers. This brings us nicely to
SeqIO.to_dict()’s optional argument key_function, which lets you define what to use as the dictionary
key for your records.

First you must write your own function to return the key you want (as a string) when given a SeqRecord

object. In general, the details of function will depend on the sort of input records you are dealing with. But
for our orchids, we can just split up the record’s identifier using the “pipe” character (the vertical line) and
return the fourth entry (field three):

def get_accession(record):

""""Given a SeqRecord, return the accession number as a string.

e.g. "gi|2765613|emb|Z78488.1|PTZ78488" -> "Z78488.1"

"""

parts = record.id.split("|")

assert len(parts) == 5 and parts[0] == "gi" and parts[2] == "emb"

return parts[3]

Then we can give this function to the SeqIO.to_dict() function to use in building the dictionary:

from Bio import SeqIO

orchid_dict = SeqIO.to_dict(

SeqIO.parse("ls_orchid.fasta", "fasta"), key_function=get_accession

)

print(orchid_dict.keys())
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Finally, as desired, the new dictionary keys:

>>> print(orchid_dict.keys())

[’Z78484.1’, ’Z78464.1’, ’Z78455.1’, ’Z78442.1’, ’Z78532.1’, ’Z78453.1’, ..., ’Z78471.1’]

Not too complicated, I hope!

5.4.1.2 Indexing a dictionary using the SEGUID checksum

To give another example of working with dictionaries of SeqRecord objects, we’ll use the SEGUID checksum
function. This is a relatively recent checksum, and collisions should be very rare (i.e. two different sequences
with the same checksum), an improvement on the CRC64 checksum.

Once again, working with the orchids GenBank file:

from Bio import SeqIO

from Bio.SeqUtils.CheckSum import seguid

for record in SeqIO.parse("ls_orchid.gbk", "genbank"):

print(record.id, seguid(record.seq))

This should give:

Z78533.1 JUEoWn6DPhgZ9nAyowsgtoD9TTo

Z78532.1 MN/s0q9zDoCVEEc+k/IFwCNF2pY

...

Z78439.1 H+JfaShya/4yyAj7IbMqgNkxdxQ

Now, recall the Bio.SeqIO.to_dict() function’s key_function argument expects a function which turns
a SeqRecord into a string. We can’t use the seguid() function directly because it expects to be given a Seq

object (or a string). However, we can use Python’s lambda feature to create a “one off” function to give to
Bio.SeqIO.to_dict() instead:

>>> from Bio import SeqIO

>>> from Bio.SeqUtils.CheckSum import seguid

>>> seguid_dict = SeqIO.to_dict(SeqIO.parse("ls_orchid.gbk", "genbank"),

... lambda rec : seguid(rec.seq))

>>> record = seguid_dict["MN/s0q9zDoCVEEc+k/IFwCNF2pY"]

>>> print(record.id)

Z78532.1

>>> print(record.description)

C.californicum 5.8S rRNA gene and ITS1 and ITS2 DNA

That should have retrieved the record Z78532.1, the second entry in the file.

5.4.2 Sequence files as Dictionaries – Indexed files

As the previous couple of examples tried to illustrate, using Bio.SeqIO.to_dict() is very flexible. However,
because it holds everything in memory, the size of file you can work with is limited by your computer’s RAM.
In general, this will only work on small to medium files.

For larger files you should consider Bio.SeqIO.index(), which works a little differently. Although it
still returns a dictionary like object, this does not keep everything in memory. Instead, it just records where
each record is within the file – when you ask for a particular record, it then parses it on demand.

As an example, let’s use the same GenBank file as before:
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>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.gbk", "genbank")

>>> len(orchid_dict)

94

>>> orchid_dict.keys()

[’Z78484.1’, ’Z78464.1’, ’Z78455.1’, ’Z78442.1’, ’Z78532.1’, ’Z78453.1’, ..., ’Z78471.1’]

>>> seq_record = orchid_dict["Z78475.1"]

>>> print(seq_record.description)

P.supardii 5.8S rRNA gene and ITS1 and ITS2 DNA

>>> seq_record.seq

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GGT’, IUPACAmbiguousDNA())

>>> orchid_dict.close()

Note that Bio.SeqIO.index() won’t take a handle, but only a filename. There are good reasons for this,
but it is a little technical. The second argument is the file format (a lower case string as used in the other
Bio.SeqIO functions). You can use many other simple file formats, including FASTA and FASTQ files (see
the example in Section 20.1.11). However, alignment formats like PHYLIP or Clustal are not supported.
Finally as an optional argument you can supply an alphabet, or a key function.

Here is the same example using the FASTA file - all we change is the filename and the format name:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.fasta", "fasta")

>>> len(orchid_dict)

94

>>> orchid_dict.keys()

[’gi|2765596|emb|Z78471.1|PDZ78471’, ’gi|2765646|emb|Z78521.1|CCZ78521’, ...

..., ’gi|2765613|emb|Z78488.1|PTZ78488’, ’gi|2765583|emb|Z78458.1|PHZ78458’]

5.4.2.1 Specifying the dictionary keys

Suppose you want to use the same keys as before? Much like with the Bio.SeqIO.to_dict() example in
Section 5.4.1.1, you’ll need to write a tiny function to map from the FASTA identifier (as a string) to the
key you want:

def get_acc(identifier):

""""Given a SeqRecord identifier string, return the accession number as a string.

e.g. "gi|2765613|emb|Z78488.1|PTZ78488" -> "Z78488.1"

"""

parts = identifier.split("|")

assert len(parts) == 5 and parts[0] == "gi" and parts[2] == "emb"

return parts[3]

Then we can give this function to the Bio.SeqIO.index() function to use in building the dictionary:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.fasta", "fasta", key_function=get_acc)

>>> print(orchid_dict.keys())

[’Z78484.1’, ’Z78464.1’, ’Z78455.1’, ’Z78442.1’, ’Z78532.1’, ’Z78453.1’, ..., ’Z78471.1’]

Easy when you know how?
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5.4.2.2 Getting the raw data for a record

The dictionary-like object from Bio.SeqIO.index() gives you each entry as a SeqRecord object. However,
it is sometimes useful to be able to get the original raw data straight from the file. For this use the get_raw()
method which takes a single argument (the record identifier) and returns a bytes string (extracted from the
file without modification).

A motivating example is extracting a subset of a records from a large file where either Bio.SeqIO.write()
does not (yet) support the output file format (e.g. the plain text SwissProt file format) or where you need
to preserve the text exactly (e.g. GenBank or EMBL output from Biopython does not yet preserve every
last bit of annotation).

Let’s suppose you have download the whole of UniProt in the plain text SwissPort file format from their
FTP site (ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
uniprot_sprot.dat.gz) and uncompressed it as the file uniprot_sprot.dat, and you want to extract just
a few records from it:

>>> from Bio import SeqIO

>>> uniprot = SeqIO.index("uniprot_sprot.dat", "swiss")

>>> with open("selected.dat", "wb") as out_handle:

... for acc in ["P33487", "P19801", "P13689", "Q8JZQ5", "Q9TRC7"]:

... out_handle.write(uniprot.get_raw(acc))

...

Note with Python 3 onwards, we have to open the file for writing in binary mode because the get_raw()

method returns bytes strings.
There is a longer example in Section 20.1.5 using the SeqIO.index() function to sort a large sequence

file (without loading everything into memory at once).

5.4.3 Sequence files as Dictionaries – Database indexed files

Biopython 1.57 introduced an alternative, Bio.SeqIO.index_db(), which can work on even extremely large
files since it stores the record information as a file on disk (using an SQLite3 database) rather than in
memory. Also, you can index multiple files together (providing all the record identifiers are unique).

The Bio.SeqIO.index() function takes three required arguments:

• Index filename, we suggest using something ending .idx. This index file is actually an SQLite3
database.

• List of sequence filenames to index (or a single filename)

• File format (lower case string as used in the rest of the SeqIO module).

As an example, consider the GenBank flat file releases from the NCBI FTP site, ftp://ftp.ncbi.nih.
gov/genbank/, which are gzip compressed GenBank files.

As of GenBank release 210, there are 38 files making up the viral sequences, gbvrl1.seq, . . . , gbvrl38.seq,
taking about 8GB on disk once decompressed, and containing in total nearly two million records.

If you were interested in the viruses, you could download all the virus files from the command line very
easily with the rsync command, and then decompress them with gunzip:

# For illustration only, see reduced example below

$ rsync -avP "ftp.ncbi.nih.gov::genbank/gbvrl*.seq.gz" .

$ gunzip gbvrl*.seq.gz

Unless you care about viruses, that’s a lot of data to download just for this example - so let’s download
just the first four chunks (about 25MB each compressed), and decompress them (taking in all about 1GB of
space):
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# Reduced example, download only the first four chunks

$ curl -O ftp://ftp.ncbi.nih.gov/genbank/gbvrl1.seq.gz

$ curl -O ftp://ftp.ncbi.nih.gov/genbank/gbvrl2.seq.gz

$ curl -O ftp://ftp.ncbi.nih.gov/genbank/gbvrl3.seq.gz

$ curl -O ftp://ftp.ncbi.nih.gov/genbank/gbvrl4.seq.gz

$ gunzip gbvrl*.seq.gz

Now, in Python, index these GenBank files as follows:

>>> import glob

>>> from Bio import SeqIO

>>> files = glob.glob("gbvrl*.seq")

>>> print("%i files to index" % len(files))

4

>>> gb_vrl = SeqIO.index_db("gbvrl.idx", files, "genbank")

>>> print("%i sequences indexed" % len(gb_vrl))

272960 sequences indexed

Indexing the full set of virus GenBank files took about ten minutes on my machine, just the first four
files took about a minute or so.

However, once done, repeating this will reload the index file gbvrl.idx in a fraction of a second.
You can use the index as a read only Python dictionary - without having to worry about which file the

sequence comes from, e.g.

>>> print(gb_vrl["AB811634.1"].description)

Equine encephalosis virus NS3 gene, complete cds, isolate: Kimron1.

5.4.3.1 Getting the raw data for a record

Just as with the Bio.SeqIO.index() function discussed above in Section 5.4.2.2, the dictionary like object
also lets you get at the raw bytes of each record:

>>> print(gb_vrl.get_raw("AB811634.1"))

LOCUS AB811634 723 bp RNA linear VRL 17-JUN-2015

DEFINITION Equine encephalosis virus NS3 gene, complete cds, isolate: Kimron1.

ACCESSION AB811634

...

//

5.4.4 Indexing compressed files

Very often when you are indexing a sequence file it can be quite large – so you may want to compress it
on disk. Unfortunately efficient random access is difficult with the more common file formats like gzip and
bzip2. In this setting, BGZF (Blocked GNU Zip Format) can be very helpful. This is a variant of gzip (and
can be decompressed using standard gzip tools) popularised by the BAM file format, samtools, and tabix.

To create a BGZF compressed file you can use the command line tool bgzip which comes with samtools.
In our examples we use a filename extension *.bgz, so they can be distinguished from normal gzipped files
(named *.gz). You can also use the Bio.bgzf module to read and write BGZF files from within Python.

The Bio.SeqIO.index() and Bio.SeqIO.index_db() can both be used with BGZF compressed files.
For example, if you started with an uncompressed GenBank file:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.gbk", "genbank")
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>>> len(orchid_dict)

94

>>> orchid_dict.close()

You could compress this (while keeping the original file) at the command line using the following command
– but don’t worry, the compressed file is already included with the other example files:

$ bgzip -c ls_orchid.gbk > ls_orchid.gbk.bgz

You can use the compressed file in exactly the same way:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index("ls_orchid.gbk.bgz", "genbank")

>>> len(orchid_dict)

94

>>> orchid_dict.close()

or:

>>> from Bio import SeqIO

>>> orchid_dict = SeqIO.index_db("ls_orchid.gbk.bgz.idx", "ls_orchid.gbk.bgz", "genbank")

>>> len(orchid_dict)

94

>>> orchid_dict.close()

The SeqIO indexing automatically detects the BGZF compression. Note that you can’t use the same
index file for the uncompressed and compressed files.

5.4.5 Discussion

So, which of these methods should you use and why? It depends on what you are trying to do (and how much
data you are dealing with). However, in general picking Bio.SeqIO.index() is a good starting point. If you
are dealing with millions of records, multiple files, or repeated analyses, then look at Bio.SeqIO.index_db().

Reasons to choose Bio.SeqIO.to_dict() over either Bio.SeqIO.index() or Bio.SeqIO.index_db()

boil down to a need for flexibility despite its high memory needs. The advantage of storing the SeqRecord

objects in memory is they can be changed, added to, or removed at will. In addition to the downside of high
memory consumption, indexing can also take longer because all the records must be fully parsed.

Both Bio.SeqIO.index() and Bio.SeqIO.index_db() only parse records on demand. When indexing,
they scan the file once looking for the start of each record and do as little work as possible to extract the
identifier.

Reasons to choose Bio.SeqIO.index() over Bio.SeqIO.index_db() include:

• Faster to build the index (more noticeable in simple file formats)

• Slightly faster access as SeqRecord objects (but the difference is only really noticeable for simple to
parse file formats).

• Can use any immutable Python object as the dictionary keys (e.g. a tuple of strings, or a frozen set)
not just strings.

• Don’t need to worry about the index database being out of date if the sequence file being indexed has
changed.

Reasons to choose Bio.SeqIO.index_db() over Bio.SeqIO.index() include:
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• Not memory limited – this is already important with files from second generation sequencing where
10s of millions of sequences are common, and using Bio.SeqIO.index() can require more than 4GB
of RAM and therefore a 64bit version of Python.

• Because the index is kept on disk, it can be reused. Although building the index database file takes
longer, if you have a script which will be rerun on the same datafiles in future, this could save time in
the long run.

• Indexing multiple files together

• The get_raw() method can be much faster, since for most file formats the length of each record is
stored as well as its offset.

5.5 Writing Sequence Files

We’ve talked about using Bio.SeqIO.parse() for sequence input (reading files), and now we’ll look at
Bio.SeqIO.write() which is for sequence output (writing files). This is a function taking three arguments:
some SeqRecord objects, a handle or filename to write to, and a sequence format.

Here is an example, where we start by creating a few SeqRecord objects the hard way (by hand, rather
than by loading them from a file):

from Bio.Seq import Seq

from Bio.SeqRecord import SeqRecord

from Bio.Alphabet import generic_protein

rec1 = SeqRecord(

Seq(

"MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD"

"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK"

"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM"

"SSAC",

generic_protein,

),

id="gi|14150838|gb|AAK54648.1|AF376133_1",

description="chalcone synthase [Cucumis sativus]",

)

rec2 = SeqRecord(

Seq(

"YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ"

"DMVVVEIPKLGKEAAVKAIKEWGQ",

generic_protein,

),

id="gi|13919613|gb|AAK33142.1|",

description="chalcone synthase [Fragaria vesca subsp. bracteata]",

)

rec3 = SeqRecord(

Seq(

"MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC"

"EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP"

"KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN"
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"NKGARVLVVCSEITAVTFRGPNDTHLDSLVGQALFGDGAAAVIIGSDPIPEVERPLFELV"

"SAAQTLLPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLVEAFQPLGISDWNSLFW"

"IAHPGGPAILDQVELKLGLKQEKLKATRKVLSNYGNMSSACVLFILDEMRKASAKEGLGT"

"TGEGLEWGVLFGFGPGLTVETVVLHSVAT",

generic_protein,

),

id="gi|13925890|gb|AAK49457.1|",

description="chalcone synthase [Nicotiana tabacum]",

)

my_records = [rec1, rec2, rec3]

Now we have a list of SeqRecord objects, we’ll write them to a FASTA format file:

from Bio import SeqIO

SeqIO.write(my_records, "my_example.faa", "fasta")

And if you open this file in your favourite text editor it should look like this:

>gi|14150838|gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]

MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD

GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK

NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM

SSAC

>gi|13919613|gb|AAK33142.1| chalcone synthase [Fragaria vesca subsp. bracteata]

YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ

DMVVVEIPKLGKEAAVKAIKEWGQ

>gi|13925890|gb|AAK49457.1| chalcone synthase [Nicotiana tabacum]

MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC

EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP

KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN

NKGARVLVVCSEITAVTFRGPNDTHLDSLVGQALFGDGAAAVIIGSDPIPEVERPLFELV

SAAQTLLPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLVEAFQPLGISDWNSLFW

IAHPGGPAILDQVELKLGLKQEKLKATRKVLSNYGNMSSACVLFILDEMRKASAKEGLGT

TGEGLEWGVLFGFGPGLTVETVVLHSVAT

Suppose you wanted to know how many records the Bio.SeqIO.write() function wrote to the handle?
If your records were in a list you could just use len(my_records), however you can’t do that when your
records come from a generator/iterator. The Bio.SeqIO.write() function returns the number of SeqRecord
objects written to the file.

Note - If you tell the Bio.SeqIO.write() function to write to a file that already exists, the old file will
be overwritten without any warning.

5.5.1 Round trips

Some people like their parsers to be “round-tripable”, meaning if you read in a file and write it back out again
it is unchanged. This requires that the parser must extract enough information to reproduce the original file
exactly. Bio.SeqIO does not aim to do this.

As a trivial example, any line wrapping of the sequence data in FASTA files is allowed. An identical
SeqRecord would be given from parsing the following two examples which differ only in their line breaks:
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>YAL068C-7235.2170 Putative promoter sequence

TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCACAGTTTTCGTTAAGA

GAACTTAACATTTTCTTATGACGTAAATGAAGTTTATATATAAATTTCCTTTTTATTGGA

>YAL068C-7235.2170 Putative promoter sequence

TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCA

CAGTTTTCGTTAAGAGAACTTAACATTTTCTTATGACGTAAATGA

AGTTTATATATAAATTTCCTTTTTATTGGA

To make a round-tripable FASTA parser you would need to keep track of where the sequence line breaks
occurred, and this extra information is usually pointless. Instead Biopython uses a default line wrapping of
60 characters on output. The same problem with white space applies in many other file formats too. Another
issue in some cases is that Biopython does not (yet) preserve every last bit of annotation (e.g. GenBank and
EMBL).

Occasionally preserving the original layout (with any quirks it may have) is important. See Section 5.4.2.2
about the get_raw() method of the Bio.SeqIO.index() dictionary-like object for one potential solution.

5.5.2 Converting between sequence file formats

In previous example we used a list of SeqRecord objects as input to the Bio.SeqIO.write() function, but
it will also accept a SeqRecord iterator like we get from Bio.SeqIO.parse() – this lets us do file conversion
by combining these two functions.

For this example we’ll read in the GenBank format file ls orchid.gbk and write it out in FASTA format:

from Bio import SeqIO

records = SeqIO.parse("ls_orchid.gbk", "genbank")

count = SeqIO.write(records, "my_example.fasta", "fasta")

print("Converted %i records" % count)

Still, that is a little bit complicated. So, because file conversion is such a common task, there is a helper
function letting you replace that with just:

from Bio import SeqIO

count = SeqIO.convert("ls_orchid.gbk", "genbank", "my_example.fasta", "fasta")

print("Converted %i records" % count)

The Bio.SeqIO.convert() function will take handles or filenames. Watch out though – if the output
file already exists, it will overwrite it! To find out more, see the built in help:

>>> from Bio import SeqIO

>>> help(SeqIO.convert)

...

In principle, just by changing the filenames and the format names, this code could be used to convert
between any file formats available in Biopython. However, writing some formats requires information (e.g.
quality scores) which other files formats don’t contain. For example, while you can turn a FASTQ file into
a FASTA file, you can’t do the reverse. See also Sections 20.1.9 and 20.1.10 in the cookbook chapter which
looks at inter-converting between different FASTQ formats.

Finally, as an added incentive for using the Bio.SeqIO.convert() function (on top of the fact your code
will be shorter), doing it this way may also be faster! The reason for this is the convert function can take
advantage of several file format specific optimisations and tricks.
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5.5.3 Converting a file of sequences to their reverse complements

Suppose you had a file of nucleotide sequences, and you wanted to turn it into a file containing their reverse
complement sequences. This time a little bit of work is required to transform the SeqRecord objects we get
from our input file into something suitable for saving to our output file.

To start with, we’ll use Bio.SeqIO.parse() to load some nucleotide sequences from a file, then print out
their reverse complements using the Seq object’s built in .reverse_complement() method (see Section 3.7):

>>> from Bio import SeqIO

>>> for record in SeqIO.parse("ls_orchid.gbk", "genbank"):

... print(record.id)

... print(record.seq.reverse_complement())

Now, if we want to save these reverse complements to a file, we’ll need to make SeqRecord objects. We
can use the SeqRecord object’s built in .reverse_complement() method (see Section 4.9) but we must
decide how to name our new records.

This is an excellent place to demonstrate the power of list comprehensions which make a list in memory:

>>> from Bio import SeqIO

>>> records = [rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \

... for rec in SeqIO.parse("ls_orchid.fasta", "fasta")]

>>> len(records)

94

Now list comprehensions have a nice trick up their sleeves, you can add a conditional statement:

>>> records = [rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \

... for rec in SeqIO.parse("ls_orchid.fasta", "fasta") if len(rec)<700]

>>> len(records)

18

That would create an in memory list of reverse complement records where the sequence length was under
700 base pairs. However, we can do exactly the same with a generator expression - but with the advantage
that this does not create a list of all the records in memory at once:

>>> records = (rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \

... for rec in SeqIO.parse("ls_orchid.fasta", "fasta") if len(rec)<700)

As a complete example:

>>> from Bio import SeqIO

>>> records = (rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \

... for rec in SeqIO.parse("ls_orchid.fasta", "fasta") if len(rec)<700)

>>> SeqIO.write(records, "rev_comp.fasta", "fasta")

18

There is a related example in Section 20.1.3, translating each record in a FASTA file from nucleotides to
amino acids.

5.5.4 Getting your SeqRecord objects as formatted strings

Suppose that you don’t really want to write your records to a file or handle – instead you want a string
containing the records in a particular file format. The Bio.SeqIO interface is based on handles, but Python
has a useful built in module which provides a string based handle.

For an example of how you might use this, let’s load in a bunch of SeqRecord objects from our orchids
GenBank file, and create a string containing the records in FASTA format:

69



from Bio import SeqIO

from StringIO import StringIO

records = SeqIO.parse("ls_orchid.gbk", "genbank")

out_handle = StringIO()

SeqIO.write(records, out_handle, "fasta")

fasta_data = out_handle.getvalue()

print(fasta_data)

This isn’t entirely straightforward the first time you see it! On the bright side, for the special case where
you would like a string containing a single record in a particular file format, use the the SeqRecord class’
format() method (see Section 4.6).

Note that although we don’t encourage it, you can use the format() method to write to a file, for example
something like this:

from Bio import SeqIO

with open("ls_orchid_long.tab", "w") as out_handle:

for record in SeqIO.parse("ls_orchid.gbk", "genbank"):

if len(record) > 100:

out_handle.write(record.format("tab"))

While this style of code will work for a simple sequential file format like FASTA or the simple tab separated
format used here, it will not work for more complex or interlaced file formats. This is why we still recommend
using Bio.SeqIO.write(), as in the following example:

from Bio import SeqIO

records = (rec for rec in SeqIO.parse("ls_orchid.gbk", "genbank") if len(rec) > 100)

SeqIO.write(records, "ls_orchid.tab", "tab")

Making a single call to SeqIO.write(...) is also much quicker than multiple calls to the SeqRecord.format(...)
method.

5.6 Low level FASTA and FASTQ parsers

Working with the low-level SimpleFastaParser or FastqGeneralIterator is often more practical than
Bio.SeqIO.parse when dealing with large high-throughput FASTA or FASTQ sequencing files where speed
matters. As noted in the introduction to this chapter, the file-format neutral Bio.SeqIO interface has the
overhead of creating many objects even for simple formats like FASTA.

When parsing FASTA files, internally Bio.SeqIO.parse() calls the low-level SimpleFastaParser with
the file handle. You can use this directly - it iterates over the file handle returning each record as a tuple of
two strings, the title line (everything after the > character) and the sequence (as a plain string):

>>> from Bio.SeqIO.FastaIO import SimpleFastaParser

>>> count = 0

>>> total_len = 0

>>> with open("ls_orchid.fasta") as in_handle:

... for title, seq in SimpleFastaParser(in_handle):

... count += 1

... total_len += len(seq)

...

>>> print("%i records with total sequence length %i" % (count, total_len))

94 records with total sequence length 67518
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As long as you don’t care about line wrapping (and you probably don’t for short read high-througput
data), then outputing FASTA format from these strings is also very fast:

...

out_handle.write(">%s\n%s\n" % (title, seq))

...

Likewise, when parsing FASTQ files, internally Bio.SeqIO.parse() calls the low-level FastqGeneralIterator
with the file handle. If you don’t need the quality scores turned into integers, or can work with them as
ASCII strings this is ideal:

>>> from Bio.SeqIO.QualityIO import FastqGeneralIterator

>>> count = 0

>>> total_len = 0

>>> with open("example.fastq") as in_handle:

... for title, seq, qual in FastqGeneralIterator(in_handle):

... count += 1

... total_len += len(seq)

...

>>> print("%i records with total sequence length %i" % (count, total_len))

3 records with total sequence length 75

There are more examples of this in the Cookbook (Chapter 20), including how to output FASTQ efficiently
from strings using this code snippet:

...

out_handle.write("@%s\n%s\n+\n%s\n" % (title, seq, qual))

...
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Chapter 6

Multiple Sequence Alignment objects

This chapter is about Multiple Sequence Alignments, by which we mean a collection of multiple sequences
which have been aligned together – usually with the insertion of gap characters, and addition of leading or
trailing gaps – such that all the sequence strings are the same length. Such an alignment can be regarded
as a matrix of letters, where each row is held as a SeqRecord object internally.

We will introduce the MultipleSeqAlignment object which holds this kind of data, and the Bio.AlignIO
module for reading and writing them as various file formats (following the design of the Bio.SeqIO module
from the previous chapter). Note that both Bio.SeqIO and Bio.AlignIO can read and write sequence
alignment files. The appropriate choice will depend largely on what you want to do with the data.

The final part of this chapter is about our command line wrappers for common multiple sequence align-
ment tools like ClustalW and MUSCLE.

6.1 Parsing or Reading Sequence Alignments

We have two functions for reading in sequence alignments, Bio.AlignIO.read() and Bio.AlignIO.parse()

which following the convention introduced in Bio.SeqIO are for files containing one or multiple alignments
respectively.

Using Bio.AlignIO.parse() will return an iterator which gives MultipleSeqAlignment objects. It-
erators are typically used in a for loop. Examples of situations where you will have multiple different
alignments include resampled alignments from the PHYLIP tool seqboot, or multiple pairwise alignments
from the EMBOSS tools water or needle, or Bill Pearson’s FASTA tools.

However, in many situations you will be dealing with files which contain only a single alignment. In
this case, you should use the Bio.AlignIO.read() function which returns a single MultipleSeqAlignment

object.
Both functions expect two mandatory arguments:

1. The first argument is a handle to read the data from, typically an open file (see Section 24.1), or a
filename.

2. The second argument is a lower case string specifying the alignment format. As in Bio.SeqIO we don’t
try and guess the file format for you! See http://biopython.org/wiki/AlignIO for a full listing of
supported formats.

There is also an optional seq_count argument which is discussed in Section 6.1.3 below for dealing with
ambiguous file formats which may contain more than one alignment.

A further optional alphabet argument allowing you to specify the expected alphabet. This can be useful
as many alignment file formats do not explicitly label the sequences as RNA, DNA or protein – which means
Bio.AlignIO will default to using a generic alphabet.
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6.1.1 Single Alignments

As an example, consider the following annotation rich protein alignment in the PFAM or Stockholm file
format:

# STOCKHOLM 1.0

#=GS COATB_BPIKE/30-81 AC P03620.1

#=GS COATB_BPIKE/30-81 DR PDB; 1ifl ; 1-52;

#=GS Q9T0Q8_BPIKE/1-52 AC Q9T0Q8.1

#=GS COATB_BPI22/32-83 AC P15416.1

#=GS COATB_BPM13/24-72 AC P69541.1

#=GS COATB_BPM13/24-72 DR PDB; 2cpb ; 1-49;

#=GS COATB_BPM13/24-72 DR PDB; 2cps ; 1-49;

#=GS COATB_BPZJ2/1-49 AC P03618.1

#=GS Q9T0Q9_BPFD/1-49 AC Q9T0Q9.1

#=GS Q9T0Q9_BPFD/1-49 DR PDB; 1nh4 A; 1-49;

#=GS COATB_BPIF1/22-73 AC P03619.2

#=GS COATB_BPIF1/22-73 DR PDB; 1ifk ; 1-50;

COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA

#=GR COATB_BPIKE/30-81 SS -HHHHHHHHHHHHHH--HHHHHHHH--HHHHHHHHHHHHHHHHHHHHH----

Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA

COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA

COATB_BPM13/24-72 AEGDDP...AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA

#=GR COATB_BPM13/24-72 SS ---S-T...CHCHHHHCCCCTCCCTTCHHHHHHHHHHHHHHHHHHHHCTT--

COATB_BPZJ2/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA

Q9T0Q9_BPFD/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA

#=GR Q9T0Q9_BPFD/1-49 SS ------...-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH--

COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA

#=GR COATB_BPIF1/22-73 SS XX-HHHH--HHHHHH--HHHHHHH--HHHHHHHHHHHHHHHHHHHHHHH---

#=GC SS_cons XHHHHHHHHHHHHHHHCHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHHHC--

#=GC seq_cons AEssss...AptAhDSLpspAT-hIu.sWshVsslVsAsluIKLFKKFsSKA

//

This is the seed alignment for the Phage Coat Gp8 (PF05371) PFAM entry, downloaded from a now out
of date release of PFAM from https://pfam.xfam.org/. We can load this file as follows (assuming it has
been saved to disk as “PF05371 seed.sth” in the current working directory):

>>> from Bio import AlignIO

>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

This code will print out a summary of the alignment:

>>> print(alignment)

SingleLetterAlphabet() alignment with 7 rows and 52 columns

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52

DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83

AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49

FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73

You’ll notice in the above output the sequences have been truncated. We could instead write our own
code to format this as we please by iterating over the rows as SeqRecord objects:
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>>> from Bio import AlignIO

>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

>>> print("Alignment length %i" % alignment.get_alignment_length())

Alignment length 52

>>> for record in alignment:

... print("%s - %s" % (record.seq, record.id))

...

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52

DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83

AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49

FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73

You could also use the alignment object’s format method to show it in a particular file format – see
Section 6.2.2 for details.

Did you notice in the raw file above that several of the sequences include database cross-references to the
PDB and the associated known secondary structure? Try this:

>>> for record in alignment:

... if record.dbxrefs:

... print("%s %s" % (record.id, record.dbxrefs))

...

COATB_BPIKE/30-81 [’PDB; 1ifl ; 1-52;’]

COATB_BPM13/24-72 [’PDB; 2cpb ; 1-49;’, ’PDB; 2cps ; 1-49;’]

Q9T0Q9_BPFD/1-49 [’PDB; 1nh4 A; 1-49;’]

COATB_BPIF1/22-73 [’PDB; 1ifk ; 1-50;’]

To have a look at all the sequence annotation, try this:

>>> for record in alignment:

... print(record)

...

PFAM provide a nice web interface at http://pfam.xfam.org/family/PF05371 which will actually let
you download this alignment in several other formats. This is what the file looks like in the FASTA file
format:

>COATB_BPIKE/30-81

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA

>Q9T0Q8_BPIKE/1-52

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA

>COATB_BPI22/32-83

DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA

>COATB_BPM13/24-72

AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA

>COATB_BPZJ2/1-49

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA

>Q9T0Q9_BPFD/1-49

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA

>COATB_BPIF1/22-73

FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
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Note the website should have an option about showing gaps as periods (dots) or dashes, we’ve shown dashes
above. Assuming you download and save this as file “PF05371 seed.faa” then you can load it with almost
exactly the same code:

from Bio import AlignIO

alignment = AlignIO.read("PF05371_seed.faa", "fasta")

print(alignment)

All that has changed in this code is the filename and the format string. You’ll get the same output as
before, the sequences and record identifiers are the same. However, as you should expect, if you check each
SeqRecord there is no annotation nor database cross-references because these are not included in the FASTA
file format.

Note that rather than using the Sanger website, you could have used Bio.AlignIO to convert the original
Stockholm format file into a FASTA file yourself (see below).

With any supported file format, you can load an alignment in exactly the same way just by changing the
format string. For example, use “phylip” for PHYLIP files, “nexus” for NEXUS files or “emboss” for the
alignments output by the EMBOSS tools. There is a full listing on the wiki page (http://biopython.org/
wiki/AlignIO) and in the built in documentation (also online):

>>> from Bio import AlignIO

>>> help(AlignIO)

...

6.1.2 Multiple Alignments

The previous section focused on reading files containing a single alignment. In general however, files can
contain more than one alignment, and to read these files we must use the Bio.AlignIO.parse() function.

Suppose you have a small alignment in PHYLIP format:

5 6

Alpha AACAAC

Beta AACCCC

Gamma ACCAAC

Delta CCACCA

Epsilon CCAAAC

If you wanted to bootstrap a phylogenetic tree using the PHYLIP tools, one of the steps would be to
create a set of many resampled alignments using the tool bootseq. This would give output something like
this, which has been abbreviated for conciseness:

5 6

Alpha AAACCA

Beta AAACCC

Gamma ACCCCA

Delta CCCAAC

Epsilon CCCAAA

5 6

Alpha AAACAA

Beta AAACCC

Gamma ACCCAA

Delta CCCACC

Epsilon CCCAAA
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5 6

Alpha AAAAAC

Beta AAACCC

Gamma AACAAC

Delta CCCCCA

Epsilon CCCAAC

...

5 6

Alpha AAAACC

Beta ACCCCC

Gamma AAAACC

Delta CCCCAA

Epsilon CAAACC

If you wanted to read this in using Bio.AlignIO you could use:

from Bio import AlignIO

alignments = AlignIO.parse("resampled.phy", "phylip")

for alignment in alignments:

print(alignment)

print("")

This would give the following output, again abbreviated for display:

SingleLetterAlphabet() alignment with 5 rows and 6 columns

AAACCA Alpha

AAACCC Beta

ACCCCA Gamma

CCCAAC Delta

CCCAAA Epsilon

SingleLetterAlphabet() alignment with 5 rows and 6 columns

AAACAA Alpha

AAACCC Beta

ACCCAA Gamma

CCCACC Delta

CCCAAA Epsilon

SingleLetterAlphabet() alignment with 5 rows and 6 columns

AAAAAC Alpha

AAACCC Beta

AACAAC Gamma

CCCCCA Delta

CCCAAC Epsilon

...

SingleLetterAlphabet() alignment with 5 rows and 6 columns

AAAACC Alpha

ACCCCC Beta

AAAACC Gamma
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CCCCAA Delta

CAAACC Epsilon

As with the function Bio.SeqIO.parse(), using Bio.AlignIO.parse() returns an iterator. If you want
to keep all the alignments in memory at once, which will allow you to access them in any order, then turn
the iterator into a list:

from Bio import AlignIO

alignments = list(AlignIO.parse("resampled.phy", "phylip"))

last_align = alignments[-1]

first_align = alignments[0]

6.1.3 Ambiguous Alignments

Many alignment file formats can explicitly store more than one alignment, and the division between each
alignment is clear. However, when a general sequence file format has been used there is no such block
structure. The most common such situation is when alignments have been saved in the FASTA file format.
For example consider the following:

>Alpha

ACTACGACTAGCTCAG--G

>Beta

ACTACCGCTAGCTCAGAAG

>Gamma

ACTACGGCTAGCACAGAAG

>Alpha

ACTACGACTAGCTCAGG--

>Beta

ACTACCGCTAGCTCAGAAG

>Gamma

ACTACGGCTAGCACAGAAG

This could be a single alignment containing six sequences (with repeated identifiers). Or, judging from the
identifiers, this is probably two different alignments each with three sequences, which happen to all have the
same length.

What about this next example?

>Alpha

ACTACGACTAGCTCAG--G

>Beta

ACTACCGCTAGCTCAGAAG

>Alpha

ACTACGACTAGCTCAGG--

>Gamma

ACTACGGCTAGCACAGAAG

>Alpha

ACTACGACTAGCTCAGG--

>Delta

ACTACGGCTAGCACAGAAG

Again, this could be a single alignment with six sequences. However this time based on the identifiers we
might guess this is three pairwise alignments which by chance have all got the same lengths.

This final example is similar:
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>Alpha

ACTACGACTAGCTCAG--G

>XXX

ACTACCGCTAGCTCAGAAG

>Alpha

ACTACGACTAGCTCAGG

>YYY

ACTACGGCAAGCACAGG

>Alpha

--ACTACGAC--TAGCTCAGG

>ZZZ

GGACTACGACAATAGCTCAGG

In this third example, because of the differing lengths, this cannot be treated as a single alignment containing
all six records. However, it could be three pairwise alignments.

Clearly trying to store more than one alignment in a FASTA file is not ideal. However, if you are forced to
deal with these as input files Bio.AlignIO can cope with the most common situation where all the alignments
have the same number of records. One example of this is a collection of pairwise alignments, which can be
produced by the EMBOSS tools needle and water – although in this situation, Bio.AlignIO should be able
to understand their native output using “emboss” as the format string.

To interpret these FASTA examples as several separate alignments, we can use Bio.AlignIO.parse()

with the optional seq_count argument which specifies how many sequences are expected in each alignment
(in these examples, 3, 2 and 2 respectively). For example, using the third example as the input data:

for alignment in AlignIO.parse(handle, "fasta", seq_count=2):

print("Alignment length %i" % alignment.get_alignment_length())

for record in alignment:

print("%s - %s" % (record.seq, record.id))

print("")

giving:

Alignment length 19

ACTACGACTAGCTCAG--G - Alpha

ACTACCGCTAGCTCAGAAG - XXX

Alignment length 17

ACTACGACTAGCTCAGG - Alpha

ACTACGGCAAGCACAGG - YYY

Alignment length 21

--ACTACGAC--TAGCTCAGG - Alpha

GGACTACGACAATAGCTCAGG - ZZZ

Using Bio.AlignIO.read() or Bio.AlignIO.parse() without the seq_count argument would give a
single alignment containing all six records for the first two examples. For the third example, an exception
would be raised because the lengths differ preventing them being turned into a single alignment.

If the file format itself has a block structure allowing Bio.AlignIO to determine the number of sequences
in each alignment directly, then the seq_count argument is not needed. If it is supplied, and doesn’t agree
with the file contents, an error is raised.

Note that this optional seq_count argument assumes each alignment in the file has the same number of
sequences. Hypothetically you may come across stranger situations, for example a FASTA file containing
several alignments each with a different number of sequences – although I would love to hear of a real world
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example of this. Assuming you cannot get the data in a nicer file format, there is no straight forward way
to deal with this using Bio.AlignIO. In this case, you could consider reading in the sequences themselves
using Bio.SeqIO and batching them together to create the alignments as appropriate.

6.2 Writing Alignments

We’ve talked about using Bio.AlignIO.read() and Bio.AlignIO.parse() for alignment input (reading
files), and now we’ll look at Bio.AlignIO.write() which is for alignment output (writing files). This is a
function taking three arguments: some MultipleSeqAlignment objects (or for backwards compatibility the
obsolete Alignment objects), a handle or filename to write to, and a sequence format.

Here is an example, where we start by creating a few MultipleSeqAlignment objects the hard way (by
hand, rather than by loading them from a file). Note we create some SeqRecord objects to construct the
alignment from.

from Bio.Alphabet import generic_dna

from Bio.Seq import Seq

from Bio.SeqRecord import SeqRecord

from Bio.Align import MultipleSeqAlignment

align1 = MultipleSeqAlignment(

[

SeqRecord(Seq("ACTGCTAGCTAG", generic_dna), id="Alpha"),

SeqRecord(Seq("ACT-CTAGCTAG", generic_dna), id="Beta"),

SeqRecord(Seq("ACTGCTAGDTAG", generic_dna), id="Gamma"),

]

)

align2 = MultipleSeqAlignment(

[

SeqRecord(Seq("GTCAGC-AG", generic_dna), id="Delta"),

SeqRecord(Seq("GACAGCTAG", generic_dna), id="Epsilon"),

SeqRecord(Seq("GTCAGCTAG", generic_dna), id="Zeta"),

]

)

align3 = MultipleSeqAlignment(

[

SeqRecord(Seq("ACTAGTACAGCTG", generic_dna), id="Eta"),

SeqRecord(Seq("ACTAGTACAGCT-", generic_dna), id="Theta"),

SeqRecord(Seq("-CTACTACAGGTG", generic_dna), id="Iota"),

]

)

my_alignments = [align1, align2, align3]

Now we have a list of Alignment objects, we’ll write them to a PHYLIP format file:

from Bio import AlignIO

AlignIO.write(my_alignments, "my_example.phy", "phylip")

And if you open this file in your favourite text editor it should look like this:
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3 12

Alpha ACTGCTAGCT AG

Beta ACT-CTAGCT AG

Gamma ACTGCTAGDT AG

3 9

Delta GTCAGC-AG

Epislon GACAGCTAG

Zeta GTCAGCTAG

3 13

Eta ACTAGTACAG CTG

Theta ACTAGTACAG CT-

Iota -CTACTACAG GTG

Its more common to want to load an existing alignment, and save that, perhaps after some simple
manipulation like removing certain rows or columns.

Suppose you wanted to know how many alignments the Bio.AlignIO.write() function wrote to the han-
dle? If your alignments were in a list like the example above, you could just use len(my_alignments), how-
ever you can’t do that when your records come from a generator/iterator. Therefore the Bio.AlignIO.write()
function returns the number of alignments written to the file.

Note - If you tell the Bio.AlignIO.write() function to write to a file that already exists, the old file
will be overwritten without any warning.

6.2.1 Converting between sequence alignment file formats

Converting between sequence alignment file formats with Bio.AlignIO works in the same way as convert-
ing between sequence file formats with Bio.SeqIO (Section 5.5.2). We load generally the alignment(s) using
Bio.AlignIO.parse() and then save them using the Bio.AlignIO.write() – or just use the Bio.AlignIO.convert()
helper function.

For this example, we’ll load the PFAM/Stockholm format file used earlier and save it as a Clustal W
format file:

from Bio import AlignIO

count = AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.aln", "clustal")

print("Converted %i alignments" % count)

Or, using Bio.AlignIO.parse() and Bio.AlignIO.write():

from Bio import AlignIO

alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")

count = AlignIO.write(alignments, "PF05371_seed.aln", "clustal")

print("Converted %i alignments" % count)

The Bio.AlignIO.write() function expects to be given multiple alignment objects. In the example
above we gave it the alignment iterator returned by Bio.AlignIO.parse().

In this case, we know there is only one alignment in the file so we could have used Bio.AlignIO.read()

instead, but notice we have to pass this alignment to Bio.AlignIO.write() as a single element list:

from Bio import AlignIO

alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

AlignIO.write([alignment], "PF05371_seed.aln", "clustal")
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Either way, you should end up with the same new Clustal W format file “PF05371 seed.aln” with the
following content:

CLUSTAL X (1.81) multiple sequence alignment

COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS

Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS

COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS

COATB_BPM13/24-72 AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS

COATB_BPZJ2/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFAS

Q9T0Q9_BPFD/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS

COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVS

COATB_BPIKE/30-81 KA

Q9T0Q8_BPIKE/1-52 RA

COATB_BPI22/32-83 KA

COATB_BPM13/24-72 KA

COATB_BPZJ2/1-49 KA

Q9T0Q9_BPFD/1-49 KA

COATB_BPIF1/22-73 RA

Alternatively, you could make a PHYLIP format file which we’ll name “PF05371 seed.phy”:

from Bio import AlignIO

AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip")

This time the output looks like this:

7 52

COATB_BPIK AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS

Q9T0Q8_BPI AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS

COATB_BPI2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS

COATB_BPM1 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS

COATB_BPZJ AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS

Q9T0Q9_BPF AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS

COATB_BPIF FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

KA

RA

KA

KA

KA

KA

RA

One of the big handicaps of the original PHYLIP alignment file format is that the sequence identifiers
are strictly truncated at ten characters. In this example, as you can see the resulting names are still unique
- but they are not very readable. As a result, a more relaxed variant of the original PHYLIP format is now
quite widely used:

from Bio import AlignIO

AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip-relaxed")
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This time the output looks like this, using a longer indentation to allow all the identifers to be given in
full:

7 52

COATB_BPIKE/30-81 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS

Q9T0Q8_BPIKE/1-52 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS

COATB_BPI22/32-83 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS

COATB_BPM13/24-72 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS

COATB_BPZJ2/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS

Q9T0Q9_BPFD/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS

COATB_BPIF1/22-73 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

KA

RA

KA

KA

KA

KA

RA

If you have to work with the original strict PHYLIP format, then you may need to compress the identifers
somehow – or assign your own names or numbering system. This following bit of code manipulates the record
identifiers before saving the output:

from Bio import AlignIO

alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

name_mapping = {}

for i, record in enumerate(alignment):

name_mapping[i] = record.id

record.id = "seq%i" % i

print(name_mapping)

AlignIO.write([alignment], "PF05371_seed.phy", "phylip")

This code used a Python dictionary to record a simple mapping from the new sequence system to the original
identifier:

{

0: "COATB_BPIKE/30-81",

1: "Q9T0Q8_BPIKE/1-52",

2: "COATB_BPI22/32-83",

# ...

}

Here is the new (strict) PHYLIP format output:

7 52

seq0 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS

seq1 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS

seq2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS

seq3 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS

seq4 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS

seq5 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
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seq6 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

KA

RA

KA

KA

KA

KA

RA

In general, because of the identifier limitation, working with strict PHYLIP file formats shouldn’t be your
first choice. Using the PFAM/Stockholm format on the other hand allows you to record a lot of additional
annotation too.

6.2.2 Getting your alignment objects as formatted strings

The Bio.AlignIO interface is based on handles, which means if you want to get your alignment(s) into a string
in a particular file format you need to do a little bit more work (see below). However, you will probably prefer
to take advantage of the alignment object’s format() method. This takes a single mandatory argument, a
lower case string which is supported by Bio.AlignIO as an output format. For example:

from Bio import AlignIO

alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

print(alignment.format("clustal"))

As described in Section 4.6, the SeqRecord object has a similar method using output formats supported
by Bio.SeqIO.

Internally the format() method is using the StringIO string based handle and calling Bio.AlignIO.write().
You can do this in your own code if for example you are using an older version of Biopython:

from Bio import AlignIO

from StringIO import StringIO

alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")

out_handle = StringIO()

AlignIO.write(alignments, out_handle, "clustal")

clustal_data = out_handle.getvalue()

print(clustal_data)

6.3 Manipulating Alignments

Now that we’ve covered loading and saving alignments, we’ll look at what else you can do with them.

6.3.1 Slicing alignments

First of all, in some senses the alignment objects act like a Python list of SeqRecord objects (the rows).
With this model in mind hopefully the actions of len() (the number of rows) and iteration (each row as a
SeqRecord) make sense:
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>>> from Bio import AlignIO

>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

>>> print("Number of rows: %i" % len(alignment))

Number of rows: 7

>>> for record in alignment:

... print("%s - %s" % (record.seq, record.id))

...

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52

DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83

AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49

FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73

You can also use the list-like append and extend methods to add more rows to the alignment (as
SeqRecord objects). Keeping the list metaphor in mind, simple slicing of the alignment should also make
sense - it selects some of the rows giving back another alignment object:

>>> print(alignment)

SingleLetterAlphabet() alignment with 7 rows and 52 columns

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81

AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52

DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83

AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49

FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73

>>> print(alignment[3:7])

SingleLetterAlphabet() alignment with 4 rows and 52 columns

AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49

AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49

FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73

What if you wanted to select by column? Those of you who have used the NumPy matrix or array objects
won’t be surprised at this - you use a double index.

>>> print(alignment[2, 6])

T

Using two integer indices pulls out a single letter, short hand for this:

>>> print(alignment[2].seq[6])

T

You can pull out a single column as a string like this:

>>> print(alignment[:, 6])

TTT---T

You can also select a range of columns. For example, to pick out those same three rows we extracted
earlier, but take just their first six columns:
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>>> print(alignment[3:6, :6])

SingleLetterAlphabet() alignment with 3 rows and 6 columns

AEGDDP COATB_BPM13/24-72

AEGDDP COATB_BPZJ2/1-49

AEGDDP Q9T0Q9_BPFD/1-49

Leaving the first index as : means take all the rows:

>>> print(alignment[:, :6])

SingleLetterAlphabet() alignment with 7 rows and 6 columns

AEPNAA COATB_BPIKE/30-81

AEPNAA Q9T0Q8_BPIKE/1-52

DGTSTA COATB_BPI22/32-83

AEGDDP COATB_BPM13/24-72

AEGDDP COATB_BPZJ2/1-49

AEGDDP Q9T0Q9_BPFD/1-49

FAADDA COATB_BPIF1/22-73

This brings us to a neat way to remove a section. Notice columns 7, 8 and 9 which are gaps in three of
the seven sequences:

>>> print(alignment[:, 6:9])

SingleLetterAlphabet() alignment with 7 rows and 3 columns

TNY COATB_BPIKE/30-81

TNY Q9T0Q8_BPIKE/1-52

TSY COATB_BPI22/32-83

--- COATB_BPM13/24-72

--- COATB_BPZJ2/1-49

--- Q9T0Q9_BPFD/1-49

TSQ COATB_BPIF1/22-73

Again, you can slice to get everything after the ninth column:

>>> print(alignment[:, 9:])

SingleLetterAlphabet() alignment with 7 rows and 43 columns

ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81

ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52

ATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83

AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72

AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49

AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49

AKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73

Now, the interesting thing is that addition of alignment objects works by column. This lets you do this as
a way to remove a block of columns:

>>> edited = alignment[:, :6] + alignment[:, 9:]

>>> print(edited)

SingleLetterAlphabet() alignment with 7 rows and 49 columns

AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81

AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52

DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83

AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
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AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49

AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49

FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73

Another common use of alignment addition would be to combine alignments for several different genes
into a meta-alignment. Watch out though - the identifiers need to match up (see Section 4.8 for how adding
SeqRecord objects works). You may find it helpful to first sort the alignment rows alphabetically by id:

>>> edited.sort()

>>> print(edited)

SingleLetterAlphabet() alignment with 7 rows and 49 columns

DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83

FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73

AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81

AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72

AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49

AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52

AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49

Note that you can only add two alignments together if they have the same number of rows.

6.3.2 Alignments as arrays

Depending on what you are doing, it can be more useful to turn the alignment object into an array of letters
– and you can do this with NumPy:

>>> import numpy as np

>>> from Bio import AlignIO

>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

>>> align_array = np.array([list(rec) for rec in alignment], np.character)

>>> print("Array shape %i by %i" % align_array.shape)

Array shape 7 by 52

If you will be working heavily with the columns, you can tell NumPy to store the array by column (as in
Fortran) rather then its default of by row (as in C):

>>> align_array = np.array([list(rec) for rec in alignment], np.character, order="F")

Note that this leaves the original Biopython alignment object and the NumPy array in memory as separate
objects - editing one will not update the other!

6.4 Alignment Tools

There are lots of algorithms out there for aligning sequences, both pairwise alignments and multiple se-
quence alignments. These calculations are relatively slow, and you generally wouldn’t want to write such
an algorithm in Python. For pairwise alignments Biopython contains the Bio.pairwise2 module , which is
supplemented by functions written in C for speed enhancements and the new PairwiseAligner (see Sec-
tion 6.5). In addition, you can use Biopython to invoke a command line tool on your behalf. Normally you
would:

1. Prepare an input file of your unaligned sequences, typically this will be a FASTA file which you might
create using Bio.SeqIO (see Chapter 5).
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2. Call the command line tool to process this input file, typically via one of Biopython’s command line
wrappers (which we’ll discuss here).

3. Read the output from the tool, i.e. your aligned sequences, typically using Bio.AlignIO (see earlier
in this chapter).

All the command line wrappers we’re going to talk about in this chapter follow the same style. You
create a command line object specifying the options (e.g. the input filename and the output filename), then
invoke this command line via a Python operating system call (e.g. using the subprocess module).

Most of these wrappers are defined in the Bio.Align.Applications module:

>>> import Bio.Align.Applications

>>> dir(Bio.Align.Applications)

...

[’ClustalwCommandline’, ’DialignCommandline’, ’MafftCommandline’, ’MuscleCommandline’,

’PrankCommandline’, ’ProbconsCommandline’, ’TCoffeeCommandline’ ...]

(Ignore the entries starting with an underscore – these have special meaning in Python.) The module
Bio.Emboss.Applications has wrappers for some of the EMBOSS suite, including needle and water,
which are described below in Section 6.4.5, and wrappers for the EMBOSS packaged versions of the PHYLIP
tools (which EMBOSS refer to as one of their EMBASSY packages - third party tools with an EMBOSS
style interface). We won’t explore all these alignment tools here in the section, just a sample, but the same
principles apply.

6.4.1 ClustalW

ClustalW is a popular command line tool for multiple sequence alignment (there is also a graphical interface
called ClustalX). Biopython’s Bio.Align.Applications module has a wrapper for this alignment tool (and
several others).

Before trying to use ClustalW from within Python, you should first try running the ClustalW tool yourself
by hand at the command line, to familiarise yourself the other options. You’ll find the Biopython wrapper
is very faithful to the actual command line API:

>>> from Bio.Align.Applications import ClustalwCommandline

>>> help(ClustalwCommandline)

...

For the most basic usage, all you need is to have a FASTA input file, such as opuntia.fasta (available
online or in the Doc/examples subdirectory of the Biopython source code). This is a small FASTA file
containing seven prickly-pear DNA sequences (from the cactus family Opuntia).

By default ClustalW will generate an alignment and guide tree file with names based on the input FASTA
file, in this case opuntia.aln and opuntia.dnd, but you can override this or make it explicit:

>>> from Bio.Align.Applications import ClustalwCommandline

>>> cline = ClustalwCommandline("clustalw2", infile="opuntia.fasta")

>>> print(cline)

clustalw2 -infile=opuntia.fasta

Notice here we have given the executable name as clustalw2, indicating we have version two installed,
which has a different filename to version one (clustalw, the default). Fortunately both versions support the
same set of arguments at the command line (and indeed, should be functionally identical).

You may find that even though you have ClustalW installed, the above command doesn’t work – you
may get a message about “command not found” (especially on Windows). This indicated that the ClustalW
executable is not on your PATH (an environment variable, a list of directories to be searched). You can
either update your PATH setting to include the location of your copy of ClustalW tools (how you do this
will depend on your OS), or simply type in the full path of the tool. For example:
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>>> import os

>>> from Bio.Align.Applications import ClustalwCommandline

>>> clustalw_exe = r"C:\Program Files\new clustal\clustalw2.exe"

>>> clustalw_cline = ClustalwCommandline(clustalw_exe, infile="opuntia.fasta")

>>> assert os.path.isfile(clustalw_exe), "Clustal W executable missing"

>>> stdout, stderr = clustalw_cline()

Remember, in Python strings \n and \t are by default interpreted as a new line and a tab – which is why
we’re put a letter “r” at the start for a raw string that isn’t translated in this way. This is generally good
practice when specifying a Windows style file name.

Internally this uses the subprocess module which is now the recommended way to run another program
in Python. This replaces older options like the os.system() and the os.popen* functions.

Now, at this point it helps to know about how command line tools “work”. When you run a tool at the
command line, it will often print text output directly to screen. This text can be captured or redirected, via
two “pipes”, called standard output (the normal results) and standard error (for error messages and debug
messages). There is also standard input, which is any text fed into the tool. These names get shortened to
stdin, stdout and stderr. When the tool finishes, it has a return code (an integer), which by convention is
zero for success.

When you run the command line tool like this via the Biopython wrapper, it will wait for it to finish,
and check the return code. If this is non zero (indicating an error), an exception is raised. The wrapper
then returns two strings, stdout and stderr.

In the case of ClustalW, when run at the command line all the important output is written directly to
the output files. Everything normally printed to screen while you wait (via stdout or stderr) is boring and
can be ignored (assuming it worked).

What we care about are the two output files, the alignment and the guide tree. We didn’t tell ClustalW
what filenames to use, but it defaults to picking names based on the input file. In this case the output should
be in the file opuntia.aln. You should be able to work out how to read in the alignment using Bio.AlignIO

by now:

>>> from Bio import AlignIO

>>> align = AlignIO.read("opuntia.aln", "clustal")

>>> print(align)

SingleLetterAlphabet() alignment with 7 rows and 906 columns

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191

TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191

In case you are interested (and this is an aside from the main thrust of this chapter), the opuntia.dnd

file ClustalW creates is just a standard Newick tree file, and Bio.Phylo can parse these:

>>> from Bio import Phylo

>>> tree = Phylo.read("opuntia.dnd", "newick")

>>> Phylo.draw_ascii(tree)

_______________ gi|6273291|gb|AF191665.1|AF191665

__________________________|

| | ______ gi|6273290|gb|AF191664.1|AF191664

| |__|

| |_____ gi|6273289|gb|AF191663.1|AF191663
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|

_|_________________ gi|6273287|gb|AF191661.1|AF191661

|

|__________ gi|6273286|gb|AF191660.1|AF191660

|

| __ gi|6273285|gb|AF191659.1|AF191659

|___|

| gi|6273284|gb|AF191658.1|AF191658

<BLANKLINE>

Chapter 13 covers Biopython’s support for phylogenetic trees in more depth.

6.4.2 MUSCLE

MUSCLE is a more recent multiple sequence alignment tool than ClustalW, and Biopython also has a wrapper
for it under the Bio.Align.Applications module. As before, we recommend you try using MUSCLE from
the command line before trying it from within Python, as the Biopython wrapper is very faithful to the
actual command line API:

>>> from Bio.Align.Applications import MuscleCommandline

>>> help(MuscleCommandline)

...

For the most basic usage, all you need is to have a FASTA input file, such as opuntia.fasta (available
online or in the Doc/examples subdirectory of the Biopython source code). You can then tell MUSCLE to
read in this FASTA file, and write the alignment to an output file:

>>> from Bio.Align.Applications import MuscleCommandline

>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.txt")

>>> print(cline)

muscle -in opuntia.fasta -out opuntia.txt

Note that MUSCLE uses “-in” and “-out” but in Biopython we have to use “input” and “out” as the
keyword arguments or property names. This is because “in” is a reserved word in Python.

By default MUSCLE will output the alignment as a FASTA file (using gapped sequences). The Bio.AlignIO
module should be able to read this alignment using format="fasta". You can also ask for ClustalW-like
output:

>>> from Bio.Align.Applications import MuscleCommandline

>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.aln", clw=True)

>>> print(cline)

muscle -in opuntia.fasta -out opuntia.aln -clw

Or, strict ClustalW output where the original ClustalW header line is used for maximum compatibility:

>>> from Bio.Align.Applications import MuscleCommandline

>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.aln", clwstrict=True)

>>> print(cline)

muscle -in opuntia.fasta -out opuntia.aln -clwstrict

The Bio.AlignIO module should be able to read these alignments using format="clustal".
MUSCLE can also output in GCG MSF format (using the msf argument), but Biopython can’t currently

parse that, or using HTML which would give a human readable web page (not suitable for parsing).
You can also set the other optional parameters, for example the maximum number of iterations. See the

built in help for details.
You would then run MUSCLE command line string as described above for ClustalW, and parse the

output using Bio.AlignIO to get an alignment object.
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6.4.3 MUSCLE using stdout

Using a MUSCLE command line as in the examples above will write the alignment to a file. This means there
will be no important information written to the standard out (stdout) or standard error (stderr) handles.
However, by default MUSCLE will write the alignment to standard output (stdout). We can take advantage
of this to avoid having a temporary output file! For example:

>>> from Bio.Align.Applications import MuscleCommandline

>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")

>>> print(muscle_cline)

muscle -in opuntia.fasta

If we run this via the wrapper, we get back the output as a string. In order to parse this we can use
StringIO to turn it into a handle. Remember that MUSCLE defaults to using FASTA as the output format:

>>> from Bio.Align.Applications import MuscleCommandline

>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")

>>> stdout, stderr = muscle_cline()

>>> from StringIO import StringIO

>>> from Bio import AlignIO

>>> align = AlignIO.read(StringIO(stdout), "fasta")

>>> print(align)

SingleLetterAlphabet() alignment with 7 rows and 906 columns

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661

TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658

The above approach is fairly simple, but if you are dealing with very large output text the fact that all
of stdout and stderr is loaded into memory as a string can be a potential drawback. Using the subprocess

module we can work directly with handles instead:

>>> import subprocess

>>> from Bio.Align.Applications import MuscleCommandline

>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")

>>> child = subprocess.Popen(str(muscle_cline),

... stdout=subprocess.PIPE,

... stderr=subprocess.PIPE,

... universal_newlines=True,

... shell=(sys.platform!="win32"))

>>> from Bio import AlignIO

>>> align = AlignIO.read(child.stdout, "fasta")

>>> print(align)

SingleLetterAlphabet() alignment with 7 rows and 906 columns

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661

TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658
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6.4.4 MUSCLE using stdin and stdout

We don’t actually need to have our FASTA input sequences prepared in a file, because by default MUSCLE
will read in the input sequence from standard input! Note this is a bit more advanced and fiddly, so don’t
bother with this technique unless you need to.

First, we’ll need some unaligned sequences in memory as SeqRecord objects. For this demonstration I’m
going to use a filtered version of the original FASTA file (using a generator expression), taking just six of
the seven sequences:

>>> from Bio import SeqIO

>>> records = (r for r in SeqIO.parse("opuntia.fasta", "fasta") if len(r) < 900)

Then we create the MUSCLE command line, leaving the input and output to their defaults (stdin and
stdout). I’m also going to ask for strict ClustalW format as for the output.

>>> from Bio.Align.Applications import MuscleCommandline

>>> muscle_cline = MuscleCommandline(clwstrict=True)

>>> print(muscle_cline)

muscle -clwstrict

Now for the fiddly bits using the subprocess module, stdin and stdout:

>>> import subprocess

>>> import sys

>>> child = subprocess.Popen(str(cline),

... stdin=subprocess.PIPE,

... stdout=subprocess.PIPE,

... stderr=subprocess.PIPE,

... universal_newlines=True,

... shell=(sys.platform!="win32"))

That should start MUSCLE, but it will be sitting waiting for its FASTA input sequences, which we must
supply via its stdin handle:

>>> SeqIO.write(records, child.stdin, "fasta")

6

>>> child.stdin.close()

After writing the six sequences to the handle, MUSCLE will still be waiting to see if that is all the FASTA
sequences or not – so we must signal that this is all the input data by closing the handle. At that point
MUSCLE should start to run, and we can ask for the output:

>>> from Bio import AlignIO

>>> align = AlignIO.read(child.stdout, "clustal")

>>> print(align)

SingleLetterAlphabet() alignment with 6 rows and 900 columns

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF19166

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF19166

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF19166

TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF19166

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF19165

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF19165
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Wow! There we are with a new alignment of just the six records, without having created a temporary
FASTA input file, or a temporary alignment output file. However, a word of caution: Dealing with errors
with this style of calling external programs is much more complicated. It also becomes far harder to diagnose
problems, because you can’t try running MUSCLE manually outside of Biopython (because you don’t have
the input file to supply). There can also be subtle cross platform issues (e.g. Windows versus Linux, Python
2 versus Python 3), and how you run your script can have an impact (e.g. at the command line, from IDLE
or an IDE, or as a GUI script). These are all generic Python issues though, and not specific to Biopython.

If you find working directly with subprocess like this scary, there is an alternative. If you execute the tool
with muscle cline() you can supply any standard input as a big string, muscle cline(stdin=...). So,
provided your data isn’t very big, you can prepare the FASTA input in memory as a string using StringIO

(see Section 24.1):

>>> from Bio import SeqIO

>>> records = (r for r in SeqIO.parse("opuntia.fasta", "fasta") if len(r) < 900)

>>> from StringIO import StringIO

>>> handle = StringIO()

>>> SeqIO.write(records, handle, "fasta")

6

>>> data = handle.getvalue()

You can then run the tool and parse the alignment as follows:

>>> stdout, stderr = muscle_cline(stdin=data)

>>> from Bio import AlignIO

>>> align = AlignIO.read(StringIO(stdout), "clustal")

>>> print(align)

SingleLetterAlphabet() alignment with 6 rows and 900 columns

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF19166

TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF19166

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF19166

TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF19166

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF19165

TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF19165

You might find this easier, but it does require more memory (RAM) for the strings used for the input
FASTA and output Clustal formatted data.

6.4.5 EMBOSS needle and water

The EMBOSS suite includes the water and needle tools for Smith-Waterman algorithm local alignment,
and Needleman-Wunsch global alignment. The tools share the same style interface, so switching between
the two is trivial – we’ll just use needle here.

Suppose you want to do a global pairwise alignment between two sequences, prepared in FASTA format
as follows:

>HBA_HUMAN

MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP

AVHASLDKFLASVSTVLTSKYR

in a file alpha.faa, and secondly in a file beta.faa:
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>HBB_HUMAN

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG

KEFTPPVQAAYQKVVAGVANALAHKYH

You can find copies of these example files with the Biopython source code under the Doc/examples/

directory.
Let’s start by creating a complete needle command line object in one go:

>>> from Bio.Emboss.Applications import NeedleCommandline

>>> needle_cline = NeedleCommandline(asequence="alpha.faa", bsequence="beta.faa",

... gapopen=10, gapextend=0.5, outfile="needle.txt")

>>> print(needle_cline)

needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5

Why not try running this by hand at the command prompt? You should see it does a pairwise comparison
and records the output in the file needle.txt (in the default EMBOSS alignment file format).

Even if you have EMBOSS installed, running this command may not work – you might get a message
about “command not found” (especially on Windows). This probably means that the EMBOSS tools are not
on your PATH environment variable. You can either update your PATH setting, or simply tell Biopython
the full path to the tool, for example:

>>> from Bio.Emboss.Applications import NeedleCommandline

>>> needle_cline = NeedleCommandline(r"C:\EMBOSS\needle.exe",

... asequence="alpha.faa", bsequence="beta.faa",

... gapopen=10, gapextend=0.5, outfile="needle.txt")

Remember in Python that for a default string \n or \t means a new line or a tab – which is why we’re put
a letter “r” at the start for a raw string.

At this point it might help to try running the EMBOSS tools yourself by hand at the command line, to
familiarise yourself the other options and compare them to the Biopython help text:

>>> from Bio.Emboss.Applications import NeedleCommandline

>>> help(NeedleCommandline)

...

Note that you can also specify (or change or look at) the settings like this:

>>> from Bio.Emboss.Applications import NeedleCommandline

>>> needle_cline = NeedleCommandline()

>>> needle_cline.asequence="alpha.faa"

>>> needle_cline.bsequence="beta.faa"

>>> needle_cline.gapopen=10

>>> needle_cline.gapextend=0.5

>>> needle_cline.outfile="needle.txt"

>>> print(needle_cline)

needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5

>>> print(needle_cline.outfile)

needle.txt

Next we want to use Python to run this command for us. As explained above, for full control, we
recommend you use the built in Python subprocess module, but for simple usage the wrapper object
usually suffices:
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>>> stdout, stderr = needle_cline()

>>> print(stdout + stderr)

Needleman-Wunsch global alignment of two sequences

Next we can load the output file with Bio.AlignIO as discussed earlier in this chapter, as the emboss

format:

>>> from Bio import AlignIO

>>> align = AlignIO.read("needle.txt", "emboss")

>>> print(align)

SingleLetterAlphabet() alignment with 2 rows and 149 columns

MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR HBA_HUMAN

MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF...KYH HBB_HUMAN

In this example, we told EMBOSS to write the output to a file, but you can tell it to write the output to
stdout instead (useful if you don’t want a temporary output file to get rid of – use stdout=True rather than
the outfile argument), and also to read one of the one of the inputs from stdin (e.g. asequence="stdin",
much like in the MUSCLE example in the section above).

This has only scratched the surface of what you can do with needle and water. One useful trick is that
the second file can contain multiple sequences (say five), and then EMBOSS will do five pairwise alignments.

6.5 Pairwise sequence alignment

Pairwise sequence alignment is the process of aligning two sequences to each other by optimizing the similarity
score between them. Biopython includes two built-in pairwise aligners: the ’old’ Bio.pairwise2 module
and the new PairwiseAligner class within the Bio.Align module (since Biopython version 1.72). Both
can perform global and local alignments and offer numerous options to change the alignment parameters.
Although pairwise2 has gained some speed and memory enhancements recently, the new PairwiseAligner

is much faster; so if you need to make many alignments with larger sequences, the latter would be the tool
to choose. pairwise2, on the contrary, is also able to align lists, which can be useful if your sequences do
not consist of single characters only.

Given that the parameters and sequences are the same, both aligners will return the same alignments
and alignment score (if the number of alignments is too high they may return different subsets of all valid
alignments).

6.5.1 pairwise2

Bio.pairwise2 contains essentially the same algorithms as water (local) and needle (global) from the
EMBOSS suite (see above) and should return the same results. The pairwise2 module has undergone some
optimization regarding speed and memory consumption recently (Biopython versions >1.67) so that for short
sequences (global alignments: ˜2000 residues, local alignments ˜600 residues) it’s faster (or equally fast) to
use pairwise2 than calling EMBOSS’ water or needle via the command line tools.

Suppose you want to do a global pairwise alignment between the same two hemoglobin sequences from
above (HBA HUMAN, HBB HUMAN) stored in alpha.faa and beta.faa:

>>> from Bio import pairwise2

>>> from Bio import SeqIO

>>> seq1 = SeqIO.read("alpha.faa", "fasta")

>>> seq2 = SeqIO.read("beta.faa", "fasta")

>>> alignments = pairwise2.align.globalxx(seq1.seq, seq2.seq)
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As you see, we call the alignment function with align.globalxx. The tricky part are the last two letters
of the function name (here: xx), which are used for decoding the scores and penalties for matches (and
mismatches) and gaps. The first letter decodes the match score, e.g. x means that a match counts 1 while
mismatches have no costs. With m general values for either matches or mismatches can be defined (for more
options see Biopython’s API). The second letter decodes the cost for gaps; x means no gap costs at all,
with s different penalties for opening and extending a gap can be assigned. So, globalxx means that only
matches between both sequences are counted.

Our variable alignments now contains a list of alignments (at least one) which have the same op-
timal score for the given conditions. In our example this are 80 different alignments with the score 72
(Bio.pairwise2 will return up to 1000 alignments). Have a look at one of these alignments:

>>> len(alignments)

80

>>> print(alignments[0])

(’MV-LSPADKTNV---K-A--A-WGKVGAHAG...YR-’, ’MVHL-----T--PEEKSAVTALWGKV----...Y-H’,

72.0, 0, 217)

Each alignment is a tuple consisting of the two aligned sequences, the score, the start and the end
positions of the alignment (in global alignments the start is always 0 and the end the length of the alignment).
Bio.pairwise2 has a function format_alignment for a nicer printout:

>>> print(pairwise2.format_alignment(*alignment[0]))

MV-LSPADKTNV---K-A--A-WGKVGAHAG---EY-GA-EALE-RMFLSF----PTTK-TY--F...YR-

|| | | | | | |||| | | ||| | | | | |...|

MVHL-----T--PEEKSAVTALWGKV-----NVDE-VG-GEAL-GR--L--LVVYP---WT-QRF...Y-H

Score=72

Better alignments are usually obtained by penalizing gaps: higher costs for opening a gap and lower costs
for extending an existing gap. For amino acid sequences match scores are usually encoded in matrices like
PAM or BLOSUM. Thus, a more meaningful alignment for our example can be obtained by using the BLOSUM62
matrix, together with a gap open penalty of 10 and a gap extension penalty of 0.5 (using globalds):

>>> from Bio import pairwise2

>>> from Bio import SeqIO

>>> from Bio.SubsMat.MatrixInfo import blosum62

>>> seq1 = SeqIO.read("alpha.faa", "fasta")

>>> seq2 = SeqIO.read("beta.faa", "fasta")

>>> alignments = pairwise2.align.globalds(seq1.seq, seq2.seq, blosum62, -10, -0.5)

>>> len(alignments)

2

>>> print(pairwise2.format_alignment(*alignments[0]))

MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR

|| |.|..|..|.|.|||| ......|............|.......||.

MVHLTPEEKSAVTALWGKV-NVDEVGGEALGRLLVVYPWTQRFF...KYH

Score=292.5

This alignment has the same score that we obtained earlier with EMBOSS needle using the same sequences
and the same parameters.

Local alignments are called similarly with the function align.localXX, where again XX stands for a two
letter code for the match and gap functions:
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>>> from Bio import pairwise2

>>> from Bio.SubsMat.MatrixInfo import blosum62

>>> alignments = pairwise2.align.localds("LSPADKTNVKAA", "PEEKSAV", blosum62, -10, -1)

>>> print(pairwise2.format_alignment(*alignments[0]))

3 PADKTNV

|..|..|

1 PEEKSAV

Score=16

<BLANKLINE>

In recent Biopython versions, format_alignment will only print the aligned part of a local alignment
(together with the start positions in 1-based notation, as shown in the above example). If you are also
interested in the non- aligned parts of the sequences, use the keyword-parameter full_sequences=True:

>>> from Bio import pairwise2

>>> from Bio.SubsMat.MatrixInfo import blosum62

>>> alignments = pairwise2.align.localds("LSPADKTNVKAA", "PEEKSAV", blosum62, -10, -1)

>>> print(pairwise2.format_alignment(*alignments[0], full_sequences=True))

LSPADKTNVKAA

|..|..|

--PEEKSAV---

Score=16

<BLANKLINE>

Note that local alignments must, as defined by Smith & Waterman, have a positive score (>0). Thus,
pairwise2 may return no alignments if no score >0 has been obtained. Also, pairwise2 will not report
alignments which are the result of the addition of zero-scoring extensions on either site. In the next example,
the pairs serin/aspartate (S/D) and lysin/asparagin (K/N) both have a match score of 0. As you see, the
aligned part has not been extended:

>>> from Bio import pairwise2

>>> from Bio.SubsMat.MatrixInfo import blosum62

>>> alignments = pairwise2.align.localds("LSSPADKTNVKKAA", "DDPEEKSAVNN", blosum62, -10, -1)

>>> print(pairwise2.format_alignment(*alignments[0]))

4 PADKTNV

|..|..|

3 PEEKSAV

Score=16

<BLANKLINE>

Instead of supplying a complete match/mismatch matrix, the match code m allows for easy defining
general match/mismatch values. The next example uses match/mismatch scores of 5/-4 and gap penalties
(open/extend) of 2/0.5 using localms:

>>> alignments = pairwise2.align.localms("AGAACT", "GAC", 5, -4, -2, -0.5)

>>> print(pairwise2.format_alignment(*alignments[0]))

2 GAAC

| ||

1 G-AC

Score=13

<BLANKLINE>

One useful keyword argument of the Bio.pairwise2.align functions is score only. When set to True

it will only return the score of the best alignment(s), but in a significantly shorter time. It will also allow
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the alignment of longer sequences before a memory error is raised. Another useful keyword argument is
one alignment only=True which will also result in some speed gain.

Unfortunately, Bio.pairwise2 does not work with Biopython’s multiple sequence alignment objects
(yet). However, the module has some interesting advanced features: you can define your own match and gap
functions (interested in testing affine logarithmic gap costs?), gap penalties and end gaps penalties can be
different for both sequences, sequences can be supplied as lists (useful if you have residues that are encoded
by more than one character), etc. These features are hard (if at all) to realize with other alignment tools.
For more details see the modules documentation in Biopython’s API.

6.5.2 PairwiseAligner

The new Bio.Align.PairwiseAligner implements the Needleman-Wunsch, Smith-Waterman, Gotoh (three-
state), and Waterman-Smith-Beyer global and local pairwise alignment algorithms. We refer to Durbin et
al. [16] for in-depth information on sequence alignment algorithms.

6.5.2.1 Basic usage

To generate pairwise alignments, first create a PairwiseAligner object:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

The PairwiseAligner object aligner (see Section 6.5.2.2) stores the alignment parameters to be used for
the pairwise alignments.

Use the aligner.score method to calculate the alignment score between two sequences:

>>> seq1 = "GAACT"

>>> seq2 = "GAT"

>>> score = aligner.score(seq1, seq2)

>>> score

3.0

To see the actual alignments, use the aligner.align method and iterate over the PairwiseAlignment

objects returned:

>>> alignments = aligner.align(seq1, seq2)

>>> for alignment in alignments:

... print(alignment)

...

GAACT

||--|

GA--T

<BLANKLINE>

GAACT

|-|-|

G-A-T

<BLANKLINE>

By default, a global pairwise alignment is performed, which finds the optimal alignment over the whole
length of seq1 and seq2. Instead, a local alignment will find the subsequence of seq1 and seq2 with the
highest alignment score. Local alignments can be generated by setting aligner.mode to "local":

97

http://biopython.org/DIST/docs/api/Bio.pairwise2-module.html


>>> aligner.mode = ’local’

>>> seq1 = "AGAACTC"

>>> seq2 = "GAACT"

>>> score = aligner.score(seq1, seq2)

>>> score

5.0

>>> alignments = aligner.align(seq1, seq2)

>>> for alignment in alignments:

... print(alignment)

...

AGAACTC

|||||

GAACT

<BLANKLINE>

Note that there is some ambiguity in the definition of the best local alignments if segments with a score
0 can be added to the alignment. We follow the suggestion by Waterman & Eggert [41] and disallow such
extensions.

6.5.2.2 The pairwise aligner object

The PairwiseAligner object stores all alignment parameters to be used for the pairwise alignments. To see
an overview of the values for all parameters, use

>>> print(aligner)

Pairwise sequence aligner with parameters

match_score: 1.000000

mismatch_score: 0.000000

target_internal_open_gap_score: 0.000000

target_internal_extend_gap_score: 0.000000

target_left_open_gap_score: 0.000000

target_left_extend_gap_score: 0.000000

target_right_open_gap_score: 0.000000

target_right_extend_gap_score: 0.000000

query_internal_open_gap_score: 0.000000

query_internal_extend_gap_score: 0.000000

query_left_open_gap_score: 0.000000

query_left_extend_gap_score: 0.000000

query_right_open_gap_score: 0.000000

query_right_extend_gap_score: 0.000000

mode: local

<BLANKLINE>

See Sections 6.5.2.3, 6.5.2.4, and 6.5.2.5 below for the definition of these parameters. The attribute mode

(described above in Section 6.5.2.1) can be set equal to "global" or "local" to specify global or local
pairwise alignment, respectively.

Depending on the gap scoring parameters (see Sections 6.5.2.4 and 6.5.2.5) and mode, a PairwiseAligner

object automatically chooses the appropriate algorithm to use for pairwise sequence alignment. To verify
the selected algorithm, use

>>> aligner.algorithm

’Smith-Waterman’
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This attribute is read-only.
A PairwiseAligner object also stores the precision ε to be used during alignment. The value of ε is

stored in the attribute aligner.epsilon, and by default is equal to 10−6:

>>> aligner.epsilon

1e-06

Two scores will be considered equal to each other for the purpose of the alignment if the absolute difference
between them is less than ε.

6.5.2.3 Substitution scores

Substitution scores define the value to be added to the total score when two letters (nucleotides or amino
acids) are aligned to each other. The substitution scores to be used by the PairwiseAligner can be specified
in two ways:

• By specifying a match score for identical letters, and a mismatch scores for mismatched letters. Nu-
cleotide sequence alignments are typically based on match and mismatch scores. For example, by
default BLAST [26] uses a match score of +1 and a mismatch score of −2 for nucleotide alignments
by megablast, with a gap penalty of 2.5 (see section 6.5.2.4 for more information on gap scores).
Match and mismatch scores can be specified by setting the match and mismatch attributes of the
PairwiseAligner object:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> aligner.match_score

1.0

>>> aligner.mismatch_score

0.0

>>> score = aligner.score("ACGT","ACAT")

>>> print(score)

3.0

>>> aligner.match_score = 1.0

>>> aligner.mismatch_score = -2.0

>>> aligner.gap_score = -2.5

>>> score = aligner.score("ACGT","ACAT")

>>> print(score)

1.0

When using match and mismatch scores, the character X is interpreted as an unknown character and
gets a zero score in alignments, irrespective of the value of the match or mismatch score:

>>> score = aligner.score("ACGT","ACXT")

>>> print(score)

3.0

• Alternatively, you can use the substitution_matrix attribute of the PairwiseAligner object to
specify a substitution matrix. This allows you to apply different scores for different pairs of matched
and mismatched letters. This is typically used for amino acid sequence alignments. For example, by
default BLAST [26] uses the BLOSUM62 substitution matrix for protein alignments by blastp. This
substitution matrix is available from Biopython:

>>> from Bio.Align import substitution_matrices

>>> substitution_matrices.load() #doctest: +ELLIPSIS

99



[’BENNER22’, ’BENNER6’, ’BENNER74’, ’BLOSUM45’, ’BLOSUM50’, ’BLOSUM62’, ..., ’STR’]

>>> matrix = substitution_matrices.load("BLOSUM62")

>>> print(matrix) #doctest: +ELLIPSIS

# Matrix made by matblas from blosum62.iij

...

A R N D C Q ...

A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 ...

R -1.0 5.0 0.0 -2.0 -3.0 1.0 ...

N -2.0 0.0 6.0 1.0 -3.0 0.0 ...

D -2.0 -2.0 1.0 6.0 -3.0 0.0 ...

C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 ...

Q -1.0 1.0 0.0 0.0 -3.0 5.0 ...

...

>>> aligner.substitution_matrix = matrix

>>> score = aligner.score("ACDQ", "ACDQ")

>>> score

24.0

>>> score = aligner.score("ACDQ", "ACNQ")

>>> score

19.0

When using a substitution matrix, X is not interpreted as an unknown character. Instead, the score
provided by the substutition matrix will be used:

>>> matrix[’D’,’X’]

-1.0

>>> score = aligner.score("ACDQ", "ACXQ")

>>> score

17.0

By default, aligner.substitution_matrix is None. The attributes aligner.match_score and aligner.mismatch_score

are ignored if aligner.substitution_matrix is not None. Setting aligner.match_score or aligner.mismatch_score
to valid values will reset aligner.substitution_matrix to None.

6.5.2.4 Affine gap scores

Affine gap scores are defined by a score to open a gap, and a score to extend an existing gap:
gap score = open gap score + (n− 1)× extend gap score,
where n is the length of the gap. Biopython’s pairwise sequence aligner allows fine-grained control over

the gap scoring scheme by specifying the following twelve attributes of a PairwiseAligner object:

Opening scores Extending scores
query_left_open_gap_score query_left_extend_gap_score

query_internal_open_gap_score query_internal_extend_gap_score

query_right_open_gap_score query_right_extend_gap_score

target_left_open_gap_score target_left_extend_gap_score

target_internal_open_gap_score target_internal_extend_gap_score

target_right_open_gap_score target_right_extend_gap_score

These attributes allow for different gap scores for internal gaps and on either end of the sequence, as
shown in this example:

For convenience, PairwiseAligner objects have additional attributes that refer to a number of these
values collectively, as shown (hierarchically) in Table 6.1.
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target query score
A - query left open gap score
C - query left extend gap score
C - query left extend gap score
G G match score
G T mismatch score
G - query internal open gap score
A - query internal extend gap score
A - query internal extend gap score
T T match score
A A match score
G - query internal open gap score
C C match score
- C target internal open gap score
- C target internal extend gap score
C C match score
T G mismatch score
C C match score
- C target internal open gap score
A A match score
- T target right open gap score
- A target right extend gap score
- A target right extend gap score

6.5.2.5 General gap scores

For even more fine-grained control over the gap scores, you can specify a gap scoring function. For example,
the gap scoring function below disallows a gap after two nucleotides in the query sequence:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> def my_gap_score_function(start, length):

... if start==2:

... return -1000

... else:

... return -1 * length

...

>>> aligner.query_gap_score = my_gap_score_function

>>> alignments = aligner.align("AACTT", "AATT")

>>> for alignment in alignments:

... print(alignment)

...

AACTT

-|.||

-AATT

<BLANKLINE>

AACTT

|-.||

A-ATT

<BLANKLINE>

AACTT

||.-|
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Table 6.1: Meta-attributes of the pairwise aligner objects.
Meta-attribute Attributes it maps to
gap_score target_gap_score, query_gap_score
open_gap_score target_open_gap_score, query_open_gap_score
extend_gap_score target_extend_gap_score, query_extend_gap_score
internal_gap_score target_internal_gap_score, query_internal_gap_score
internal_open_gap_score target_internal_open_gap_score, query_internal_open_gap_score
internal_extend_gap_score target_internal_extend_gap_score, query_internal_extend_gap_score
end_gap_score target_end_gap_score, query_end_gap_score
end_open_gap_score target_end_open_gap_score, query_end_open_gap_score
end_extend_gap_score target_end_extend_gap_score, query_end_extend_gap_score
left_gap_score target_left_gap_score, query_left_gap_score
right_gap_score target_right_gap_score, query_right_gap_score
left_open_gap_score target_left_open_gap_score, query_left_open_gap_score
left_extend_gap_score target_left_extend_gap_score, query_left_extend_gap_score
right_open_gap_score target_right_open_gap_score, query_right_open_gap_score
right_extend_gap_score target_right_extend_gap_score, query_right_extend_gap_score
target_open_gap_score target_internal_open_gap_score, target_left_open_gap_score,

target_right_open_gap_score

target_extend_gap_score target_internal_extend_gap_score, target_left_extend_gap_score,
target_right_extend_gap_score

target_gap_score target_open_gap_score, target_extend_gap_score
query_open_gap_score query_internal_open_gap_score, query_left_open_gap_score,

query_right_open_gap_score

query_extend_gap_score query_internal_extend_gap_score, query_left_extend_gap_score,
query_right_extend_gap_score

query_gap_score query_open_gap_score, query_extend_gap_score
target_internal_gap_score target_internal_open_gap_score, target_internal_extend_gap_score
target_end_gap_score target_end_open_gap_score, target_end_extend_gap_score
target_end_open_gap_score target_left_open_gap_score, target_right_open_gap_score
target_end_extend_gap_score target_left_extend_gap_score, target_right_extend_gap_score
target_left_gap_score target_left_open_gap_score, target_left_extend_gap_score
target_right_gap_score target_right_open_gap_score, target_right_extend_gap_score
query_end_gap_score query_end_open_gap_score, query_end_extend_gap_score
query_end_open_gap_score query_left_open_gap_score, query_right_open_gap_score
query_end_extend_gap_score query_left_extend_gap_score, query_right_extend_gap_score
query_internal_gap_score query_internal_open_gap_score, query_internal_extend_gap_score
query_left_gap_score query_left_open_gap_score, query_left_extend_gap_score
query_right_gap_score query_right_open_gap_score, query_right_extend_gap_score
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AAT-T

<BLANKLINE>

AACTT

||.|-

AATT-

<BLANKLINE>

6.5.2.6 Iterating over alignments

The alignments returned by aligner.align are a kind of immutable iterable objects (similar to range).
While they appear similarto a tuple or list of PairwiseAlignment objects, they are different in the
sense that each PairwiseAlignment object is created dynamically when it is needed. This approach was
chosen because the number of alignments can be extremely large, in particular for poor alignments (see
Section 6.5.2.8 for an example).

You can perform the following operations on alignments:

• len(alignments) returns the number of alignments stored. This function returns quickly, even if the
number of alignments is huge. If the number of alignments is extremely large (typically, larger than
9,223,372,036,854,775,807, which is the largest integer that can be stored as a long int on 64 bit
machines), len(alignments) will raise an OverflowError. A large number of alignments suggests
that the alignment quality is low.

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> alignments = aligner.align("AAA", "AA")

>>> len(alignments)

3

• You can extract a specific alignment by index:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> alignments = aligner.align("AAA", "AA")

>>> print(alignments[2])

AAA

-||

-AA

<BLANKLINE>

>>> print(alignments[0])

AAA

||-

AA-

<BLANKLINE>

• You can iterate over alignments, for example as in

>>> for alignment in alignments:

... print(alignment)

...

Note that alignments can be reused, i.e. you can iterate over alignments multiple times:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

103



>>> alignments = aligner.align("AAA", "AA")

>>> for alignment in alignments:

... print(alignment)

...

AAA

||-

AA-

<BLANKLINE>

AAA

|-|

A-A

<BLANKLINE>

AAA

-||

-AA

<BLANKLINE>

>>> for alignment in alignments:

... print(alignment)

...

AAA

||-

AA-

<BLANKLINE>

AAA

|-|

A-A

<BLANKLINE>

AAA

-||

-AA

<BLANKLINE>

You can also convert the alignments iterator into a list or tuple:

>>> alignments = list(alignments)

It is wise to check the number of alignments by calling len(alignments) before attempting to call
list(alignments) to save all alignments as a list.

• The alignment score (which has the same value for each alignment in alignments) is stored as an
attribute. This allows you to check the alignment score before proceeding to extract individual align-
ments:

>>> print(alignments.score)

2.0

6.5.2.7 Alignment objects

The aligner.align method returns PairwiseAlignment objects, each representing one alignment between
the two sequences.

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> seq1 = "GAACT"
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>>> seq2 = "GAT"

>>> alignments = aligner.align(seq1, seq2)

>>> alignment = alignments[0]

>>> alignment

<Bio.Align.PairwiseAlignment object at 0x10204d250>

Each alignment stores the alignment score:

>>> alignment.score

3.0

as well as pointers to the sequences that were aligned:

>>> alignment.target

’GAACT’

>>> alignment.query

’GAT’

Print the PairwiseAlignment object to show the alignment explicitly:

>>> print(alignment)

GAACT

||--|

GA--T

<BLANKLINE>

You can also represent the alignment as a string in PSL (Pattern Space Layout, as generated by BLAT
[29]) format:

>>> format(alignment, ’psl’)

’3\t0\t0\t0\t0\t0\t1\t2\t+\tquery\t3\t0\t3\ttarget\t5\t0\t5\t2\t2,1,\t0,2,\t0,4,\n’

Use the aligned property to find the start and end indices of subsequences in the target and query
sequence that were aligned to each other. Generally, if the alignment between target (t) and query (q)
consists of N chunks, you get two tuples of length N :

(

((t_start1, t_end1), (t_start2, t_end2), ..., (t_startN, t_endN)),

((q_start1, q_end1), (q_start2, q_end2), ..., (q_startN, q_endN)),

)

In the current example, ‘alignment.aligned‘ returns two tuples of length 2:

>>> alignment.aligned

(((0, 2), (4, 5)), ((0, 2), (2, 3)))

while for the alternative alignment, two tuples of length 3 are returned:

>>> alignment = alignments[1]

>>> print(alignment)

GAACT

|-|-|

G-A-T

<BLANKLINE>

>>> alignment.aligned

(((0, 1), (2, 3), (4, 5)), ((0, 1), (1, 2), (2, 3)))
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Note that different alignments may have the same subsequences aligned to each other. In particular, this
may occur if alignments differ from each other in terms of their gap placement only:

>>> aligner.mismatch_score = -10

>>> alignments = aligner.align("AAACAAA", "AAAGAAA")

>>> len(alignments)

2

>>> print(alignments[0])

AAAC-AAA

|||--|||

AAA-GAAA

<BLANKLINE>

>>> alignments[0].aligned

(((0, 3), (4, 7)), ((0, 3), (4, 7)))

>>> print(alignments[1])

AAA-CAAA

|||--|||

AAAG-AAA

<BLANKLINE>

>>> alignments[1].aligned

(((0, 3), (4, 7)), ((0, 3), (4, 7)))

The aligned property can be used to identify alignments that are identical to each other in terms of their
aligned sequences.

6.5.2.8 Examples

Suppose you want to do a global pairwise alignment between the same two hemoglobin sequences from above
(HBA HUMAN, HBB HUMAN) stored in alpha.faa and beta.faa:

>>> from Bio import Align

>>> from Bio import SeqIO

>>> seq1 = SeqIO.read("alpha.faa", "fasta")

>>> seq2 = SeqIO.read("beta.faa", "fasta")

>>> aligner = Align.PairwiseAligner()

>>> score = aligner.score(seq1.seq, seq2.seq)

>>> print(score)

72.0

showing an alignment score of 72.0. To see the individual alignments, do

>>> alignments = aligner.align(seq1.seq, seq2.seq)

In this example, the total number of optimal alignments is huge (more than 4×1037), and calling len(alignments)
will raise an OverflowError:

>>> len(alignments)

Traceback (most recent call last):

...

OverflowError: number of optimal alignments is larger than 9223372036854775807

Let’s have a look at the first alignment:

>>> alignment = alignments[0]
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The alignment object stores the alignment score, as well as the alignment itself:

>>> print(alignment.score)

72.0

>>> print(alignment) #doctest: +ELLIPSIS

MV-LS-PAD--KTN--VK-AA-WGKV-----GAHAGEYGAEALE-RMFLSF----P-TTKTY--FPHF--...

||-|--|----|----|--|--||||-----|---||--|--|--|--|------|-|------|--|--...

MVHL-TP--EEK--SAV-TA-LWGKVNVDEVG---GE--A--L-GR--L--LVVYPWT----QRF--FES...

Better alignments are usually obtained by penalizing gaps: higher costs for opening a gap and lower costs
for extending an existing gap. For amino acid sequences match scores are usually encoded in matrices like
PAM or BLOSUM. Thus, a more meaningful alignment for our example can be obtained by using the BLOSUM62
matrix, together with a gap open penalty of 10 and a gap extension penalty of 0.5:

>>> from Bio import Align

>>> from Bio import SeqIO

>>> from Bio.Align import substitution_matrices

>>> seq1 = SeqIO.read("alpha.faa", "fasta")

>>> seq2 = SeqIO.read("beta.faa", "fasta")

>>> aligner = Align.PairwiseAligner()

>>> aligner.open_gap_score = -10

>>> aligner.extend_gap_score = -0.5

>>> aligner.substitution_matrix = substitution_matrices.load("BLOSUM62")

>>> score = aligner.score(seq1.seq, seq2.seq)

>>> print(score)

292.5

>>> alignments = aligner.align(seq1.seq, seq2.seq)

>>> len(alignments)

2

>>> print(alignments[0].score)

292.5

>>> print(alignments[0]) #doctest: +ELLIPSIS

MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSAQVKGHGKKV...

||-|.|..|..|.|.||||--...|.|.|||.|.....|.|...|..|-|||-----.|...||.|||||...

MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV...

<BLANKLINE>

This alignment has the same score that we obtained earlier with EMBOSS needle using the same sequences
and the same parameters.

To perform a local alignment, set aligner.mode to ’local’:

>>> aligner.mode = ’local’

>>> aligner.open_gap_score = -10

>>> aligner.extend_gap_score = -1

>>> alignments = aligner.align("LSPADKTNVKAA", "PEEKSAV")

>>> print(len(alignments))

1

>>> alignment = alignments[0]

>>> print(alignment)

LSPADKTNVKAA

|..|..|

PEEKSAV

<BLANKLINE>
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>>> print(alignment.score)

16.0

6.5.2.9 Generalized pairwise alignments

In most cases, PairwiseAligner is used to perform alignments of sequences (strings or Seq objects) consisting
of single-letter nucleotides or amino acids. More generally, PairwiseAligner can also be applied to lists or
tuples of arbitrary objects. This section will describe some examples of such generalized pairwise alignments.

Generalized pairwise alignments using a substitution matrix and alphabet Schneider et al. [35]
created a substitution matrix for aligning three-nucleotide codons (see below in section 6.6 for more infor-
mation). This substitution matrix is associated with an alphabet consisting of all three-letter codons:

>>> from Bio.Align import substitution_matrices

>>> m = substitution_matrices.load("SCHNEIDER")

>>> m.alphabet #doctest: +ELLIPSIS

(’AAA’, ’AAC’, ’AAG’, ’AAT’, ’ACA’, ’ACC’, ’ACG’, ’ACT’, ..., ’TTG’, ’TTT’)

We can use this matrix to align codon sequences to each other:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> aligner.substitution_matrix = m

>>> aligner.gap_score = -1.0

>>> s1 = (’AAT’, ’CTG’, ’TTT’, ’TTT’)

>>> s2 = (’AAT’, ’TTA’, ’TTT’)

>>> alignments = aligner.align(s1, s2)

>>> len(alignments)

2

>>> print(alignments[0])

AAT CTG TTT TTT

||| ... ||| ---

AAT TTA TTT ---

<BLANKLINE>

>>> print(alignments[1])

AAT CTG TTT TTT

||| ... --- |||

AAT TTA --- TTT

<BLANKLINE>

Note that aligning TTT to TTA, as in this example:

AAT CTG TTT TTT

||| --- ... |||

AAT --- TTA TTT

would get a much lower score:

>>> print(m[’CTG’, ’TTA’])

7.6

>>> print(m[’TTT’, ’TTA’])

-0.3
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presumably because CTG and TTA both code for leucine, while TTT codes for phenylalanine. The three-letter
codon substitution matrix also reveals a preference among codons representing the same amino acid. For
example, TTA has a preference for CTG preferred compared to CTC, though all three code for leucine:

>>> s1 = (’AAT’, ’CTG’, ’CTC’, ’TTT’)

>>> s2 = (’AAT’, ’TTA’, ’TTT’)

>>> alignments = aligner.align(s1, s2)

>>> len(alignments)

1

>>> print(alignments[0])

AAT CTG CTC TTT

||| ... --- |||

AAT TTA --- TTT

<BLANKLINE>

>>> print(m[’CTC’, ’TTA’])

6.5

Generalized pairwise alignments using match/mismatch scores and an alphabet Using the three-
letter amino acid symbols, the sequences above translate to

>>> s1 = (’Asn’, ’Leu’, ’Leu’, ’Phe’)

>>> s2 = (’Asn’, ’Leu’, ’Phe’)

We can align these sequences directly to each other by using a three-letter amino acid alphabet:

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> aligner.alphabet = [’Ala’, ’Arg’, ’Asn’, ’Asp’, ’Cys’,

... ’Gln’, ’Glu’, ’Gly’, ’His’, ’Ile’,

... ’Leu’, ’Lys’, ’Met’, ’Phe’, ’Pro’,

... ’Ser’, ’Thr’, ’Trp’, ’Tyr’, ’Val’]

We use +6/-1 match and mismatch scores as an approximation of the BLOSUM62 matrix, and align these
sequences to each other:

>>> aligner.match = +6

>>> aligner.mismatch = -1

>>> alignments = aligner.align(s1, s2)

>>> print(len(alignments))

2

>>> print(alignments[0])

Asn Leu Leu Phe

||| ||| --- |||

Asn Leu --- Phe

<BLANKLINE>

>>> print(alignments[1])

Asn Leu Leu Phe

||| --- ||| |||

Asn --- Leu Phe

<BLANKLINE>

>>> print(alignments.score)

18.0
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Generalized pairwise alignments using match/mismatch scores and integer sequences Inter-
nally, the first step when performing an alignment is to replace the two sequences by integer arrays consisting
of the indices of each letter in each sequence in the alphabet associated with the aligner. This step can be
bypassed by passing integer arrays directly:

>>> import numpy

>>> from Bio import Align

>>> aligner = Align.PairwiseAligner()

>>> s1 = numpy.array([2, 10, 10, 13], numpy.int32)

>>> s2 = numpy.array([2, 10, 13], numpy.int32)

>>> aligner.match = +6

>>> aligner.mismatch = -1

>>> alignments = aligner.align(s1, s2)

>>> print(len(alignments))

2

>>> print(alignments[0])

2 10 10 13

| || -- ||

2 10 -- 13

<BLANKLINE>

>>> print(alignments[1])

2 10 10 13

| -- || ||

2 -- 10 13

<BLANKLINE>

>>> print(alignments.score)

18.0

Note that the indices should consist of 32-bit integers, as specified in this example by numpy.int32.
Negative indices are interpreted as unknown letters, and receive a zero score:

>>> s2 = numpy.array([2, -5, 13], numpy.int32)

>>> aligner.gap_score = -3

>>> alignments = aligner.align(s1, s2)

>>> print(len(alignments))

2

>>> print(alignments[0])

2 10 10 13

| .. -- ||

2 -5 -- 13

<BLANKLINE>

>>> print(alignments[1])

2 10 10 13

| -- .. ||

2 -- -5 13

<BLANKLINE>

>>> print(alignments.score)

9.0

Generalized pairwise alignments using a substitution matrix and integer sequences Integer
sequences can also be aligned using a substitution matrix, in this case a numpy square array without an
alphabet associated with it. In this case, all index values must be non-negative, and smaller than the size of
the substitution matrix:
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>>> from Bio import Align

>>> import numpy

>>> aligner = Align.PairwiseAligner()

>>> m = numpy.eye(5)

>>> m[0, 1:] = m[1:, 0] = -2

>>> m[2,2] = 3

>>> print(m)

[[ 1. -2. -2. -2. -2.]

[-2. 1. 0. 0. 0.]

[-2. 0. 3. 0. 0.]

[-2. 0. 0. 1. 0.]

[-2. 0. 0. 0. 1.]]

>>> aligner.substitution_matrix = m

>>> aligner.gap_score = -1

>>> s1 = numpy.array([0, 2, 3, 4], numpy.int32)

>>> s2 = numpy.array([0, 3, 2, 1], numpy.int32)

>>> alignments = aligner.align(s1, s2)

>>> print(len(alignments))

2

>>> print(alignments[0])

0 - 2 3 4

| - | . -

0 3 2 1 -

<BLANKLINE>

>>> print(alignments[1])

0 - 2 3 4

| - | - .

0 3 2 - 1

<BLANKLINE>

>>> print(alignments.score)

2.0

6.6 Substitution matrices

The Array class in Bio.Align.substitution_matrices is a subclass of numpy arrays that supports indexing
both by integers and by specific strings. An Array instance can either be a one-dimensional array or a square
two-dimensional arrays. A one-dimensional Array object can for example be used to store the nucleotide
frequency of a DNA sequence, while a two-dimensional Array object can be used to represent a scoring
matrix for sequence alignments.

Creating an Array object

To create a one-dimensional Array, only the alphabet of allowed letters needs to be specified:

>>> from Bio.Align.substitution_matrices import Array

>>> counts = Array("ACGT")

>>> print(counts)

A 0.0

C 0.0

G 0.0

T 0.0

<BLANKLINE>
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The allowed letters are stored in the alphabet property:

>>> counts.alphabet

’ACGT’

This property is read-only; modifying the underlying _alphabet attribute may lead to unexpected results.
Elements can be accessed both by letter and by integer index:

>>> counts[’C’] = -3

>>> counts[2] = 7

>>> print(counts)

A 0.0

C -3.0

G 7.0

T 0.0

<BLANKLINE>

>>> counts[1]

-3.0

Using a letter that is not in the alphabet, or an index that is out of bounds, will cause a IndexError:

>>> counts[’U’]

Traceback (most recent call last):

...

IndexError: ’U’

>>> counts[’X’] = 6

Traceback (most recent call last):

...

IndexError: ’X’

>>> counts[7]

Traceback (most recent call last):

...

IndexError: index 7 is out of bounds for axis 0 with size 4

A two-dimensional Array can be created by specifying dims=2:

>>> from Bio.Align.substitution_matrices import Array

>>> counts = Array("ACGT", dims=2)

>>> print(counts)

A C G T

A 0.0 0.0 0.0 0.0

C 0.0 0.0 0.0 0.0

G 0.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0

<BLANKLINE>

Again, both letters and integers can be used for indexing, and specifying a letter that is not in the alphabet
will cause an IndexError:

>>> counts[’A’, ’C’] = 12.0

>>> counts[2, 1] = 5.0

>>> counts[3, ’T’] = -2

>>> print(counts)

A C G T
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A 0.0 12.0 0.0 0.0

C 0.0 0.0 0.0 0.0

G 0.0 5.0 0.0 0.0

T 0.0 0.0 0.0 -2.0

<BLANKLINE>

>>> counts[’X’, 1]

Traceback (most recent call last):

...

IndexError: ’X’

>>> counts[’A’, 5]

Traceback (most recent call last):

...

IndexError: index 5 is out of bounds for axis 1 with size 4

Selecting a row or column from the two-dimensional array will return a one-dimensional Array:

>>> counts = Array("ACGT", dims=2)

>>> counts[’A’, ’C’] = 12.0

>>> counts[2, 1] = 5.0

>>> counts[3, ’T’] = -2

>>> counts[’G’]

Array([0., 5., 0., 0.],

alphabet=’ACGT’)

>>> counts[:, ’C’]

Array([12., 0., 5., 0.],

alphabet=’ACGT’)

Array objects can thus be used as an array and as a dictionary. They can be converted to plain numpy
arrays or plain dictionary objects:

>>> import numpy

>>> x = Array("ACGT")

>>> x[’C’] = 5

>>> x

Array([0., 5., 0., 0.],

alphabet=’ACGT’)

>>> a = numpy.array(x) # create a plain numpy array

>>> a

array([0., 5., 0., 0.])

>>> d = dict(x) # create a plain dictionary

>>> d

{’A’: 0.0, ’C’: 5.0, ’G’: 0.0, ’T’: 0.0}

While the alphabet of a Array is usually a string, you may also use a tuple of (immutable) objects. This
is used for example for a codon substitution matrix, where the keys are not individual nucleotides or amino
acids but instead three-nucleotide codons.

Calculating a substitution matrix from a sequence alignment

As Array is a subclass of a numpy array, you can apply mathematical operations on an Array object in
much the same way. Here, we illustrate this by calculating a scoring matrix from the alignment of the 16S
ribosomal RNA gene sequences of Escherichia coli and Bacillus subtilis. First, we create a PairwiseAligner

and initialize it with the default scores used by blastn:
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>>> from Bio.Align import PairwiseAligner

>>> aligner = PairwiseAligner()

>>> aligner.mode = ’local’

>>> aligner.match_score = 2

>>> aligner.mismatch_score = -3

>>> aligner.open_gap_score = -7

>>> aligner.extend_gap_score = -2

Next, we read in the 16S ribosomal RNA gene sequence of Escherichia coli and Bacillus subtilis (provided
in Tests/scoring_matrices/ecoli.fa and Tests/scoring_matrices/bsubtilis.fa), and align them to
each other:

>>> from Bio import SeqIO

>>> sequence1 = SeqIO.read(’ecoli.fa’, ’fasta’)

>>> sequence2 = SeqIO.read(’bsubtilis.fa’, ’fasta’)

>>> alignments = aligner.align(sequence1.seq, sequence2.seq)

The number of alignments generated is very large:

>>> len(alignments)

1990656

However, as they only differ trivially from each other, we arbitrarily choose the first alignment, and count
the number of each substitution:

>>> alignment = alignments[0]

>>> from Bio.Align.substitution_matrices import Array

>>> frequency = Array("ACGT", dims=2)

>>> for (start1, end1), (start2, end2) in zip(*alignment.aligned):

... seq1 = sequence1[start1:end1]

... seq2 = sequence2[start2:end2]

... for c1, c2 in zip(seq1, seq2):

... frequency[c1, c2] += 1

...

>>> print(frequency)

A C G T

A 307.0 19.0 34.0 19.0

C 15.0 280.0 25.0 29.0

G 34.0 24.0 401.0 20.0

T 24.0 36.0 20.0 228.0

<BLANKLINE>

We normalize against the total number to find the probability of each substitution, and create a symmetric
matrix:

>>> import numpy

>>> probabilities = frequency / numpy.sum(frequency)

>>> probabilities = (probabilities + probabilities.transpose()) / 2.0

>>> print(format(probabilities, "%.4f"))

A C G T

A 0.2026 0.0112 0.0224 0.0142

C 0.0112 0.1848 0.0162 0.0215

G 0.0224 0.0162 0.2647 0.0132

T 0.0142 0.0215 0.0132 0.1505

<BLANKLINE>
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The background probability is the probability of finding an A, C, G, or T nucleotide in each sequence
separately. This can be calculated as the sum of each row or column:

>>> background = numpy.sum(probabilities, 0)

>>> print(format(background, "%.4f"))

A 0.2505

C 0.2337

G 0.3165

T 0.1993

<BLANKLINE>

The number of substitutions expected at random is simply the product of the background distribution with
itself:

>>> expected = numpy.dot(background[:,None], background[None, :])

>>> print(format(expected, "%.4f"))

A C G T

A 0.0627 0.0585 0.0793 0.0499

C 0.0585 0.0546 0.0740 0.0466

G 0.0793 0.0740 0.1002 0.0631

T 0.0499 0.0466 0.0631 0.0397

<BLANKLINE>

The scoring matrix can then be calculated as the logarithm of the odds-ratio of the observed and the expected
probabilities:

>>> oddsratios = probabilities / expected

>>> scoring_matrix = numpy.log2(oddsratios)

>>> print(scoring_matrix)

A C G T

A 1.7 -2.4 -1.8 -1.8

C -2.4 1.8 -2.2 -1.1

G -1.8 -2.2 1.4 -2.3

T -1.8 -1.1 -2.3 1.9

<BLANKLINE>

The matrix can be used to set the substitution matrix for the pairwise aligner:

>>> aligner.substitution_matrix = scoring_matrix

A ValueError is triggered if the Array objects appearing in a mathematical operation have different
alphabets:

>>> from Bio.Align.substitution_matrices import Array

>>> d = Array("ACGT")

>>> r = Array("ACGU")

>>> d + r

Traceback (most recent call last):

...

ValueError: alphabets are inconsistent
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Reading Array object from file

Bio.Align.substitution_matrices includes a parser to read one- and two-dimensional Array objects from
file. One-dimensional arrays are represented by a simple two-column format, with the first column containing
the key and the second column the corresponding value. For example, the file hg38.chrom.sizes (obtained
from UCSC), available in the Tests/Align subdirectory of the Biopython distribution, contains the size in
nucleotides of each chromosome in human genome assembly hg38:

chr1 248956422

chr2 242193529

chr3 198295559

chr4 190214555

...

chrUn_KI270385v1 990

chrUn_KI270423v1 981

chrUn_KI270392v1 971

chrUn_KI270394v1 970

To parse this file, use

>>> from Bio.Align import substitution_matrices

>>> with open("hg38.chrom.sizes") as handle:

... table = substitution_matrices.read(handle)

...

>>> print(table) #doctest: +ELLIPSIS

chr1 248956422.0

chr2 242193529.0

chr3 198295559.0

chr4 190214555.0

...

chrUn_KI270423v1 981.0

chrUn_KI270392v1 971.0

chrUn_KI270394v1 970.0

<BLANKLINE>

Use dtype=int to read the values as integers:

>>> with open("hg38.chrom.sizes") as handle:

... table = substitution_matrices.read(handle, int)

...

>>> print(table) #doctest: +ELLIPSIS

chr1 248956422

chr2 242193529

chr3 198295559

chr4 190214555

...

chrUn_KI270423v1 981

chrUn_KI270392v1 971

chrUn_KI270394v1 970

<BLANKLINE>

For two-dimensional arrays, we follow the file format of substitution matrices provided by NCBI. For
example, the BLOSUM62 matrix, which is the default substitution matrix for NCBI’s protein-protein BLAST
[26] program blastp, is stored as follows:
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# Matrix made by matblas from blosum62.iij

# * column uses minimum score

# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units

# Blocks Database = /data/blocks_5.0/blocks.dat

# Cluster Percentage: >= 62

# Entropy = 0.6979, Expected = -0.5209

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

...

This file is included in the Biopython distribution under Bio/Align/substitution_matrices/data. To
parse this file, use

>>> from Bio.Align import substitution_matrices

>>> with open("BLOSUM62") as handle:

... matrix = substitution_matrices.read(handle)

...

>>> print(matrix.alphabet)

ARNDCQEGHILKMFPSTWYVBZX*

>>> print(matrix[’A’,’D’])

-2.0

The header lines starting with # are stored in the attribute header:

>>> matrix.header[0]

’Matrix made by matblas from blosum62.iij’

We can now use this matrix as the substitution matrix on an aligner object:

>>> from Bio.Align import PairwiseAligner

>>> aligner = PairwiseAligner()

>>> aligner.substitution_matrix = matrix

To save an Array object, create a string first:

>>> text = format(matrix)

>>> print(text) #doctest: +ELLIPSIS

# Matrix made by matblas from blosum62.iij

# * column uses minimum score

# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units

# Blocks Database = /data/blocks_5.0/blocks.dat

# Cluster Percentage: >= 62

# Entropy = 0.6979, Expected = -0.5209

A R N D C Q E G H I L K M F P S ...

A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 -1.0 0.0 -2.0 -1.0 -1.0 -1.0 -1.0 -2.0 -1.0 1.0 ...
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R -1.0 5.0 0.0 -2.0 -3.0 1.0 0.0 -2.0 0.0 -3.0 -2.0 2.0 -1.0 -3.0 -2.0 -1.0 ...

N -2.0 0.0 6.0 1.0 -3.0 0.0 0.0 0.0 1.0 -3.0 -3.0 0.0 -2.0 -3.0 -2.0 1.0 ...

D -2.0 -2.0 1.0 6.0 -3.0 0.0 2.0 -1.0 -1.0 -3.0 -4.0 -1.0 -3.0 -3.0 -1.0 0.0 ...

C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 -4.0 -3.0 -3.0 -1.0 -1.0 -3.0 -1.0 -2.0 -3.0 -1.0 ...

...

and write the text to a file.

Loading predefined substitution matrices

Biopython contains a large set of substitution matrices defined in the literature, including BLOSUM (Blocks
Substitution Matrix) [24] and PAM (Point Accepted Mutation) matrices [14]. These matrices are available
as flat files in the Bio/Align/scoring_matrices/data directory, and can be loaded into Python using the
load function in the scoring_matrices submodule. For example, the BLOSUM62 matrix can be loaded by
running

>>> from Bio.Align import substitution_matrices

>>> m = substitution_matrices.load("BLOSUM62")

This substitution matrix has an alphabet consisting of the 20 amino acids used in the genetic code, the three
ambiguous amino acids B (asparagine or aspartic acid), Z (glutamine or glutamic acid), and X (representing
any amino acid), and the stop codon represented by an asterisk:

>>> m.alphabet

’ARNDCQEGHILKMFPSTWYVBZX*’

To get a full list of available substitution matrices, use load without an argument:

>>> substitution_matrices.load() #doctest: +ELLIPSIS

[’BENNER22’, ’BENNER6’, ’BENNER74’, ’BLOSUM45’, ’BLOSUM50’, ..., ’STR’]

Note that the substitution matrix provided by Schneider et al. [35] uses an alphabet consisting of three-
nucleotide codons:

>>> m = substitution_matrices.load("SCHNEIDER")

>>> m.alphabet #doctest: +ELLIPSIS

(’AAA’, ’AAC’, ’AAG’, ’AAT’, ’ACA’, ’ACC’, ’ACG’, ’ACT’, ..., ’TTG’, ’TTT’)
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Chapter 7

BLAST

Hey, everybody loves BLAST right? I mean, geez, how can it get any easier to do comparisons between one
of your sequences and every other sequence in the known world? But, of course, this section isn’t about how
cool BLAST is, since we already know that. It is about the problem with BLAST – it can be really difficult
to deal with the volume of data generated by large runs, and to automate BLAST runs in general.

Fortunately, the Biopython folks know this only too well, so they’ve developed lots of tools for dealing
with BLAST and making things much easier. This section details how to use these tools and do useful things
with them.

Dealing with BLAST can be split up into two steps, both of which can be done from within Biopython.
Firstly, running BLAST for your query sequence(s), and getting some output. Secondly, parsing the BLAST
output in Python for further analysis.

Your first introduction to running BLAST was probably via the NCBI web-service. In fact, there are
lots of ways you can run BLAST, which can be categorised in several ways. The most important distinction
is running BLAST locally (on your own machine), and running BLAST remotely (on another machine,
typically the NCBI servers). We’re going to start this chapter by invoking the NCBI online BLAST service
from within a Python script.

NOTE : The following Chapter 8 describes Bio.SearchIO, an experimental module in Biopython. We
intend this to ultimately replace the older Bio.Blast module, as it provides a more general framework
handling other related sequence searching tools as well. However, until that is declared stable, for production
code please continue to use the Bio.Blast module for dealing with NCBI BLAST.

7.1 Running BLAST over the Internet

We use the function qblast() in the Bio.Blast.NCBIWWW module to call the online version of BLAST. This
has three non-optional arguments:

• The first argument is the blast program to use for the search, as a lower case string. The options and de-
scriptions of the programs are available at https://blast.ncbi.nlm.nih.gov/Blast.cgi. Currently
qblast only works with blastn, blastp, blastx, tblast and tblastx.

• The second argument specifies the databases to search against. Again, the options for this are available
on the NCBI Guide to BLAST ftp://ftp.ncbi.nlm.nih.gov/pub/factsheets/HowTo_BLASTGuide.

pdf.

• The third argument is a string containing your query sequence. This can either be the sequence itself,
the sequence in fasta format, or an identifier like a GI number.

The qblast function also take a number of other option arguments which are basically analogous to the
different parameters you can set on the BLAST web page. We’ll just highlight a few of them here:
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• The argument url_base sets the base URL for running BLAST over the internet. By default it
connects to the NCBI, but one can use this to connect to an instance of NCBI BLAST running in the
cloud. Please refer to the documentation for the qblast function for further details.

• The qblast function can return the BLAST results in various formats, which you can choose with the
optional format_type keyword: "HTML", "Text", "ASN.1", or "XML". The default is "XML", as that is
the format expected by the parser, described in section 7.3 below.

• The argument expect sets the expectation or e-value threshold.

For more about the optional BLAST arguments, we refer you to the NCBI’s own documentation, or that
built into Biopython:

>>> from Bio.Blast import NCBIWWW

>>> help(NCBIWWW.qblast)

...

Note that the default settings on the NCBI BLAST website are not quite the same as the defaults
on QBLAST. If you get different results, you’ll need to check the parameters (e.g., the expectation value
threshold and the gap values).

For example, if you have a nucleotide sequence you want to search against the nucleotide database (nt)
using BLASTN, and you know the GI number of your query sequence, you can use:

>>> from Bio.Blast import NCBIWWW

>>> result_handle = NCBIWWW.qblast("blastn", "nt", "8332116")

Alternatively, if we have our query sequence already in a FASTA formatted file, we just need to open the
file and read in this record as a string, and use that as the query argument:

>>> from Bio.Blast import NCBIWWW

>>> fasta_string = open("m_cold.fasta").read()

>>> result_handle = NCBIWWW.qblast("blastn", "nt", fasta_string)

We could also have read in the FASTA file as a SeqRecord and then supplied just the sequence itself:

>>> from Bio.Blast import NCBIWWW

>>> from Bio import SeqIO

>>> record = SeqIO.read("m_cold.fasta", format="fasta")

>>> result_handle = NCBIWWW.qblast("blastn", "nt", record.seq)

Supplying just the sequence means that BLAST will assign an identifier for your sequence automatically.
You might prefer to use the SeqRecord object’s format method to make a FASTA string (which will include
the existing identifier):

>>> from Bio.Blast import NCBIWWW

>>> from Bio import SeqIO

>>> record = SeqIO.read("m_cold.fasta", format="fasta")

>>> result_handle = NCBIWWW.qblast("blastn", "nt", record.format("fasta"))

This approach makes more sense if you have your sequence(s) in a non-FASTA file format which you can
extract using Bio.SeqIO (see Chapter 5).

Whatever arguments you give the qblast() function, you should get back your results in a handle
object (by default in XML format). The next step would be to parse the XML output into Python objects
representing the search results (Section 7.3), but you might want to save a local copy of the output file first.
I find this especially useful when debugging my code that extracts info from the BLAST results (because
re-running the online search is slow and wastes the NCBI computer time).

We need to be a bit careful since we can use result_handle.read() to read the BLAST output only
once – calling result_handle.read() again returns an empty string.

120



>>> with open("my_blast.xml", "w") as out_handle:

... out_handle.write(result_handle.read())

...

>>> result_handle.close()

After doing this, the results are in the file my_blast.xml and the original handle has had all its data
extracted (so we closed it). However, the parse function of the BLAST parser (described in 7.3) takes a
file-handle-like object, so we can just open the saved file for input:

>>> result_handle = open("my_blast.xml")

Now that we’ve got the BLAST results back into a handle again, we are ready to do something with
them, so this leads us right into the parsing section (see Section 7.3 below). You may want to jump ahead
to that now . . . .

7.2 Running BLAST locally

7.2.1 Introduction

Running BLAST locally (as opposed to over the internet, see Section 7.1) has at least major two advantages:

• Local BLAST may be faster than BLAST over the internet;

• Local BLAST allows you to make your own database to search for sequences against.

Dealing with proprietary or unpublished sequence data can be another reason to run BLAST locally. You
may not be allowed to redistribute the sequences, so submitting them to the NCBI as a BLAST query would
not be an option.

Unfortunately, there are some major drawbacks too – installing all the bits and getting it setup right
takes some effort:

• Local BLAST requires command line tools to be installed.

• Local BLAST requires (large) BLAST databases to be setup (and potentially kept up to date).

To further confuse matters there are several different BLAST packages available, and there are also other
tools which can produce imitation BLAST output files, such as BLAT.

7.2.2 Standalone NCBI BLAST+

The “new” NCBI BLAST+ suite was released in 2009. This replaces the old NCBI “legacy” BLAST package
(see below).

This section will show briefly how to use these tools from within Python. If you have already read or tried
the alignment tool examples in Section 6.4 this should all seem quite straightforward. First, we construct a
command line string (as you would type in at the command line prompt if running standalone BLAST by
hand). Then we can execute this command from within Python.

For example, taking a FASTA file of gene nucleotide sequences, you might want to run a BLASTX
(translation) search against the non-redundant (NR) protein database. Assuming you (or your systems
administrator) has downloaded and installed the NR database, you might run:

$ blastx -query opuntia.fasta -db nr -out opuntia.xml -evalue 0.001 -outfmt 5

This should run BLASTX against the NR database, using an expectation cut-off value of 0.001 and
produce XML output to the specified file (which we can then parse). On my computer this takes about six
minutes - a good reason to save the output to a file so you can repeat any analysis as needed.

From within Biopython we can use the NCBI BLASTX wrapper from the Bio.Blast.Applications

module to build the command line string, and run it:
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>>> from Bio.Blast.Applications import NcbiblastxCommandline

>>> help(NcbiblastxCommandline)

...

>>> blastx_cline = NcbiblastxCommandline(query="opuntia.fasta", db="nr", evalue=0.001,

... outfmt=5, out="opuntia.xml")

>>> blastx_cline

NcbiblastxCommandline(cmd=’blastx’, out=’opuntia.xml’, outfmt=5, query=’opuntia.fasta’,

db=’nr’, evalue=0.001)

>>> print(blastx_cline)

blastx -out opuntia.xml -outfmt 5 -query opuntia.fasta -db nr -evalue 0.001

>>> stdout, stderr = blastx_cline()

In this example there shouldn’t be any output from BLASTX to the terminal, so stdout and stderr should
be empty. You may want to check the output file opuntia.xml has been created.

As you may recall from earlier examples in the tutorial, the opuntia.fasta contains seven sequences,
so the BLAST XML output should contain multiple results. Therefore use Bio.Blast.NCBIXML.parse() to
parse it as described below in Section 7.3.

7.2.3 Other versions of BLAST

NCBI BLAST+ (written in C++) was first released in 2009 as a replacement for the original NCBI “legacy”
BLAST (written in C) which is no longer being updated. There were a lot of changes – the old version
had a single core command line tool blastall which covered multiple different BLAST search types (which
are now separate commands in BLAST+), and all the command line options were renamed. Biopython’s
wrappers for the NCBI “legacy” BLAST tools have been deprecated and will be removed in a future release.
To try to avoid confusion, we do not cover calling these old tools from Biopython in this tutorial.

You may also come across Washington University BLAST (WU-BLAST), and its successor, Advanced
Biocomputing BLAST (AB-BLAST, released in 2009, not free/open source). These packages include the
command line tools wu-blastall and ab-blastall, which mimicked blastall from the NCBI “legacy”
BLAST suite. Biopython does not currently provide wrappers for calling these tools, but should be able to
parse any NCBI compatible output from them.

7.3 Parsing BLAST output

As mentioned above, BLAST can generate output in various formats, such as XML, HTML, and plain text.
Originally, Biopython had parsers for BLAST plain text and HTML output, as these were the only output
formats offered at the time. Unfortunately, the BLAST output in these formats kept changing, each time
breaking the Biopython parsers. Our HTML BLAST parser has been removed, while the deprectaed plain
text BLAST parser is now only available via Bio.SearchIO. Use it at your own risk, it may or may not
work, depending on which BLAST version you’re using.

As keeping up with changes in BLAST became a hopeless endeavor, especially with users running different
BLAST versions, we now recommend to parse the output in XML format, which can be generated by recent
versions of BLAST. Not only is the XML output more stable than the plain text and HTML output, it is
also much easier to parse automatically, making Biopython a whole lot more stable.

You can get BLAST output in XML format in various ways. For the parser, it doesn’t matter how the
output was generated, as long as it is in the XML format.

• You can use Biopython to run BLAST over the internet, as described in section 7.1.

• You can use Biopython to run BLAST locally, as described in section 7.2.
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• You can do the BLAST search yourself on the NCBI site through your web browser, and then save
the results. You need to choose XML as the format in which to receive the results, and save the final
BLAST page you get (you know, the one with all of the interesting results!) to a file.

• You can also run BLAST locally without using Biopython, and save the output in a file. Again, you
need to choose XML as the format in which to receive the results.

The important point is that you do not have to use Biopython scripts to fetch the data in order to be able
to parse it. Doing things in one of these ways, you then need to get a handle to the results. In Python,
a handle is just a nice general way of describing input to any info source so that the info can be retrieved
using read() and readline() functions (see Section 24.1).

If you followed the code above for interacting with BLAST through a script, then you already have
result_handle, the handle to the BLAST results. For example, using a GI number to do an online search:

>>> from Bio.Blast import NCBIWWW

>>> result_handle = NCBIWWW.qblast("blastn", "nt", "8332116")

If instead you ran BLAST some other way, and have the BLAST output (in XML format) in the file
my_blast.xml, all you need to do is to open the file for reading:

>>> result_handle = open("my_blast.xml")

Now that we’ve got a handle, we are ready to parse the output. The code to parse it is really quite small.
If you expect a single BLAST result (i.e., you used a single query):

>>> from Bio.Blast import NCBIXML

>>> blast_record = NCBIXML.read(result_handle)

or, if you have lots of results (i.e., multiple query sequences):

>>> from Bio.Blast import NCBIXML

>>> blast_records = NCBIXML.parse(result_handle)

Just like Bio.SeqIO and Bio.AlignIO (see Chapters 5 and 6), we have a pair of input functions, read
and parse, where read is for when you have exactly one object, and parse is an iterator for when you can
have lots of objects – but instead of getting SeqRecord or MultipleSeqAlignment objects, we get BLAST
record objects.

To be able to handle the situation where the BLAST file may be huge, containing thousands of results,
NCBIXML.parse() returns an iterator. In plain English, an iterator allows you to step through the BLAST
output, retrieving BLAST records one by one for each BLAST search result:

>>> from Bio.Blast import NCBIXML

>>> blast_records = NCBIXML.parse(result_handle)

>>> blast_record = next(blast_records)

# ... do something with blast_record

>>> blast_record = next(blast_records)

# ... do something with blast_record

>>> blast_record = next(blast_records)

# ... do something with blast_record

>>> blast_record = next(blast_records)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

# No further records
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Or, you can use a for-loop:

>>> for blast_record in blast_records:

... # Do something with blast_record

Note though that you can step through the BLAST records only once. Usually, from each BLAST record
you would save the information that you are interested in. If you want to save all returned BLAST records,
you can convert the iterator into a list:

>>> blast_records = list(blast_records)

Now you can access each BLAST record in the list with an index as usual. If your BLAST file is huge
though, you may run into memory problems trying to save them all in a list.

Usually, you’ll be running one BLAST search at a time. Then, all you need to do is to pick up the first
(and only) BLAST record in blast_records:

>>> from Bio.Blast import NCBIXML

>>> blast_records = NCBIXML.parse(result_handle)

>>> blast_record = next(blast_records)

or more elegantly:

>>> from Bio.Blast import NCBIXML

>>> blast_record = NCBIXML.read(result_handle)

I guess by now you’re wondering what is in a BLAST record.

7.4 The BLAST record class

A BLAST Record contains everything you might ever want to extract from the BLAST output. Right now
we’ll just show an example of how to get some info out of the BLAST report, but if you want something in
particular that is not described here, look at the info on the record class in detail, and take a gander into
the code or automatically generated documentation – the docstrings have lots of good info about what is
stored in each piece of information.

To continue with our example, let’s just print out some summary info about all hits in our blast report
greater than a particular threshold. The following code does this:

>>> E_VALUE_THRESH = 0.04

>>> for alignment in blast_record.alignments:

... for hsp in alignment.hsps:

... if hsp.expect < E_VALUE_THRESH:

... print("****Alignment****")

... print("sequence:", alignment.title)

... print("length:", alignment.length)

... print("e value:", hsp.expect)

... print(hsp.query[0:75] + "...")

... print(hsp.match[0:75] + "...")

... print(hsp.sbjct[0:75] + "...")

This will print out summary reports like the following:

****Alignment****

sequence: >gb|AF283004.1|AF283004 Arabidopsis thaliana cold acclimation protein WCOR413-like protein

alpha form mRNA, complete cds
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length: 783

e value: 0.034

tacttgttgatattggatcgaacaaactggagaaccaacatgctcacgtcacttttagtcccttacatattcctc...

||||||||| | ||||||||||| || |||| || || |||||||| |||||| | | |||||||| ||| ||...

tacttgttggtgttggatcgaaccaattggaagacgaatatgctcacatcacttctcattccttacatcttcttc...

Basically, you can do anything you want to with the info in the BLAST report once you have parsed it.
This will, of course, depend on what you want to use it for, but hopefully this helps you get started on doing
what you need to do!

An important consideration for extracting information from a BLAST report is the type of objects that
the information is stored in. In Biopython, the parsers return Record objects, either Blast or PSIBlast

depending on what you are parsing. These objects are defined in Bio.Blast.Record and are quite complete.
Here are my attempts at UML class diagrams for the Blast and PSIBlast record classes. If you are good

at UML and see mistakes/improvements that can be made, please let me know. The Blast class diagram is
shown in Figure 7.1.

The PSIBlast record object is similar, but has support for the rounds that are used in the iteration steps
of PSIBlast. The class diagram for PSIBlast is shown in Figure 7.2.

7.5 Dealing with PSI-BLAST

You can run the standalone version of PSI-BLAST (the legacy NCBI command line tool blastpgp, or its
replacement psiblast) using the wrappers in Bio.Blast.Applications module.

At the time of writing, the NCBI do not appear to support tools running a PSI-BLAST search via the
internet.

Note that the Bio.Blast.NCBIXML parser can read the XML output from current versions of PSI-BLAST,
but information like which sequences in each iteration is new or reused isn’t present in the XML file.

7.6 Dealing with RPS-BLAST

You can run the standalone version of RPS-BLAST (either the legacy NCBI command line tool rpsblast,
or its replacement with the same name) using the wrappers in Bio.Blast.Applications module.

At the time of writing, the NCBI do not appear to support tools running an RPS-BLAST search via the
internet.

You can use the Bio.Blast.NCBIXML parser to read the XML output from current versions of RPS-
BLAST.
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Figure 7.1: Class diagram for the Blast Record class representing all of the info in a BLAST report
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Figure 7.2: Class diagram for the PSIBlast Record class.
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Chapter 8

BLAST and other sequence search
tools

Biological sequence identification is an integral part of bioinformatics. Several tools are available for this, each
with their own algorithms and approaches, such as BLAST (arguably the most popular), FASTA, HMMER,
and many more. In general, these tools usually use your sequence to search a database of potential matches.
With the growing number of known sequences (hence the growing number of potential matches), interpreting
the results becomes increasingly hard as there could be hundreds or even thousands of potential matches.
Naturally, manual interpretation of these searches’ results is out of the question. Moreover, you often need
to work with several sequence search tools, each with its own statistics, conventions, and output format.
Imagine how daunting it would be when you need to work with multiple sequences using multiple search
tools.

We know this too well ourselves, which is why we created the Bio.SearchIO submodule in Biopython.
Bio.SearchIO allows you to extract information from your search results in a convenient way, while also
dealing with the different standards and conventions used by different search tools. The name SearchIO is
a homage to BioPerl’s module of the same name.

In this chapter, we’ll go through the main features of Bio.SearchIO to show what it can do for you.
We’ll use two popular search tools along the way: BLAST and BLAT. They are used merely for illustrative
purposes, and you should be able to adapt the workflow to any other search tools supported by Bio.SearchIO

in a breeze. You’re very welcome to follow along with the search output files we’ll be using. The BLAST
output file can be downloaded here, and the BLAT output file here or are included with the Biopython
source code under the Doc/examples/ folder. Both output files were generated using this sequence:

>mystery_seq

CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

The BLAST result is an XML file generated using blastn against the NCBI refseq_rna database. For
BLAT, the sequence database was the February 2009 hg19 human genome draft and the output format is
PSL.

We’ll start from an introduction to the Bio.SearchIO object model. The model is the representation of
your search results, thus it is core to Bio.SearchIO itself. After that, we’ll check out the main functions in
Bio.SearchIO that you may often use.

Now that we’re all set, let’s go to the first step: introducing the core object model.

8.1 The SearchIO object model

Despite the wildly differing output styles among many sequence search tools, it turns out that their underlying
concept is similar:

128

https://github.com/biopython/biopython/blob/master/Doc/examples/my_blast.xml
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/my_blat.psl


• The output file may contain results from one or more search queries.

• In each search query, you will see one or more hits from the given search database.

• In each database hit, you will see one or more regions containing the actual sequence alignment between
your query sequence and the database sequence.

• Some programs like BLAT or Exonerate may further split these regions into several alignment fragments
(or blocks in BLAT and possibly exons in exonerate). This is not something you always see, as programs
like BLAST and HMMER do not do this.

Realizing this generality, we decided use it as base for creating the Bio.SearchIO object model. The
object model consists of a nested hierarchy of Python objects, each one representing one concept outlined
above. These objects are:

• QueryResult, to represent a single search query.

• Hit, to represent a single database hit. Hit objects are contained within QueryResult and in each
QueryResult there is zero or more Hit objects.

• HSP (short for high-scoring pair), to represent region(s) of significant alignments between query and hit
sequences. HSP objects are contained within Hit objects and each Hit has one or more HSP objects.

• HSPFragment, to represent a single contiguous alignment between query and hit sequences. HSPFragment
objects are contained within HSP objects. Most sequence search tools like BLAST and HMMER unify
HSP and HSPFragment objects as each HSP will only have a single HSPFragment. However there are
tools like BLAT and Exonerate that produce HSP containing multiple HSPFragment. Don’t worry if
this seems a tad confusing now, we’ll elaborate more on these two objects later on.

These four objects are the ones you will interact with when you use Bio.SearchIO. They are created
using one of the main Bio.SearchIO methods: read, parse, index, or index_db. The details of these
methods are provided in later sections. For this section, we’ll only be using read and parse. These functions
behave similarly to their Bio.SeqIO and Bio.AlignIO counterparts:

• read is used for search output files with a single query and returns a QueryResult object

• parse is used for search output files with multiple queries and returns a generator that yields QueryResult
objects

With that settled, let’s start probing each Bio.SearchIO object, beginning with QueryResult.

8.1.1 QueryResult

The QueryResult object represents a single search query and contains zero or more Hit objects. Let’s see
what it looks like using the BLAST file we have:

>>> from Bio import SearchIO

>>> blast_qresult = SearchIO.read("my_blast.xml", "blast-xml")

>>> print(blast_qresult)

Program: blastn (2.2.27+)

Query: 42291 (61)

mystery_seq

Target: refseq_rna

Hits: ---- ----- ----------------------------------------------------------

# # HSP ID + description
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---- ----- ----------------------------------------------------------

0 1 gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 52...

1 1 gi|301171311|ref|NR_035856.1| Pan troglodytes microRNA...

2 1 gi|270133242|ref|NR_032573.1| Macaca mulatta microRNA ...

3 2 gi|301171322|ref|NR_035857.1| Pan troglodytes microRNA...

4 1 gi|301171267|ref|NR_035851.1| Pan troglodytes microRNA...

5 2 gi|262205330|ref|NR_030198.1| Homo sapiens microRNA 52...

6 1 gi|262205302|ref|NR_030191.1| Homo sapiens microRNA 51...

7 1 gi|301171259|ref|NR_035850.1| Pan troglodytes microRNA...

8 1 gi|262205451|ref|NR_030222.1| Homo sapiens microRNA 51...

9 2 gi|301171447|ref|NR_035871.1| Pan troglodytes microRNA...

10 1 gi|301171276|ref|NR_035852.1| Pan troglodytes microRNA...

11 1 gi|262205290|ref|NR_030188.1| Homo sapiens microRNA 51...

12 1 gi|301171354|ref|NR_035860.1| Pan troglodytes microRNA...

13 1 gi|262205281|ref|NR_030186.1| Homo sapiens microRNA 52...

14 2 gi|262205298|ref|NR_030190.1| Homo sapiens microRNA 52...

15 1 gi|301171394|ref|NR_035865.1| Pan troglodytes microRNA...

16 1 gi|262205429|ref|NR_030218.1| Homo sapiens microRNA 51...

17 1 gi|262205423|ref|NR_030217.1| Homo sapiens microRNA 52...

18 1 gi|301171401|ref|NR_035866.1| Pan troglodytes microRNA...

19 1 gi|270133247|ref|NR_032574.1| Macaca mulatta microRNA ...

20 1 gi|262205309|ref|NR_030193.1| Homo sapiens microRNA 52...

21 2 gi|270132717|ref|NR_032716.1| Macaca mulatta microRNA ...

22 2 gi|301171437|ref|NR_035870.1| Pan troglodytes microRNA...

23 2 gi|270133306|ref|NR_032587.1| Macaca mulatta microRNA ...

24 2 gi|301171428|ref|NR_035869.1| Pan troglodytes microRNA...

25 1 gi|301171211|ref|NR_035845.1| Pan troglodytes microRNA...

26 2 gi|301171153|ref|NR_035838.1| Pan troglodytes microRNA...

27 2 gi|301171146|ref|NR_035837.1| Pan troglodytes microRNA...

28 2 gi|270133254|ref|NR_032575.1| Macaca mulatta microRNA ...

29 2 gi|262205445|ref|NR_030221.1| Homo sapiens microRNA 51...

~~~

97 1 gi|356517317|ref|XM_003527287.1| PREDICTED: Glycine ma...

98 1 gi|297814701|ref|XM_002875188.1| Arabidopsis lyrata su...

99 1 gi|397513516|ref|XM_003827011.1| PREDICTED: Pan panisc...

We’ve just begun to scratch the surface of the object model, but you can see that there’s already some
useful information. By invoking print on the QueryResult object, you can see:

• The program name and version (blastn version 2.2.27+)

• The query ID, description, and its sequence length (ID is 42291, description is ‘mystery seq’, and it is
61 nucleotides long)

• The target database to search against (refseq rna)

• A quick overview of the resulting hits. For our query sequence, there are 100 potential hits (numbered
0–99 in the table). For each hit, we can also see how many HSPs it contains, its ID, and a snippet of
its description. Notice here that Bio.SearchIO truncates the hit table overview, by showing only hits
numbered 0–29, and then 97–99.

Now let’s check our BLAT results using the same procedure as above:
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>>> blat_qresult = SearchIO.read("my_blat.psl", "blat-psl")

>>> print(blat_qresult)

Program: blat (<unknown version>)

Query: mystery_seq (61)

<unknown description>

Target: <unknown target>

Hits: ---- ----- ----------------------------------------------------------

# # HSP ID + description

---- ----- ----------------------------------------------------------

0 17 chr19 <unknown description>

You’ll immediately notice that there are some differences. Some of these are caused by the way PSL
format stores its details, as you’ll see. The rest are caused by the genuine program and target database
differences between our BLAST and BLAT searches:

• The program name and version. Bio.SearchIO knows that the program is BLAT, but in the output
file there is no information regarding the program version so it defaults to ‘¡unknown version¿’.

• The query ID, description, and its sequence length. Notice here that these details are slightly different
from the ones we saw in BLAST. The ID is ‘mystery seq’ instead of 42991, there is no known description,
but the query length is still 61. This is actually a difference introduced by the file formats themselves.
BLAST sometimes creates its own query IDs and uses your original ID as the sequence description.

• The target database is not known, as it is not stated in the BLAT output file.

• And finally, the list of hits we have is completely different. Here, we see that our query sequence only
hits the ‘chr19’ database entry, but in it we see 17 HSP regions. This should not be surprising however,
given that we are using a different program, each with its own target database.

All the details you saw when invoking the print method can be accessed individually using Python’s
object attribute access notation (a.k.a. the dot notation). There are also other format-specific attributes
that you can access using the same method.

>>> print("%s %s" % (blast_qresult.program, blast_qresult.version))

blastn 2.2.27+

>>> print("%s %s" % (blat_qresult.program, blat_qresult.version))

blat <unknown version>

>>> blast_qresult.param_evalue_threshold # blast-xml specific

10.0

For a complete list of accessible attributes, you can check each format-specific documentation. Here are
the ones for BLAST and for BLAT.

Having looked at using print on QueryResult objects, let’s drill down deeper. What exactly is a
QueryResult? In terms of Python objects, QueryResult is a hybrid between a list and a dictionary. In
other words, it is a container object with all the convenient features of lists and dictionaries.

Like Python lists and dictionaries, QueryResult objects are iterable. Each iteration returns a Hit object:

>>> for hit in blast_qresult:

... hit

Hit(id=’gi|262205317|ref|NR_030195.1|’, query_id=’42291’, 1 hsps)

Hit(id=’gi|301171311|ref|NR_035856.1|’, query_id=’42291’, 1 hsps)

Hit(id=’gi|270133242|ref|NR_032573.1|’, query_id=’42291’, 1 hsps)

Hit(id=’gi|301171322|ref|NR_035857.1|’, query_id=’42291’, 2 hsps)

Hit(id=’gi|301171267|ref|NR_035851.1|’, query_id=’42291’, 1 hsps)

...
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To check how many items (hits) a QueryResult has, you can simply invoke Python’s len method:

>>> len(blast_qresult)

100

>>> len(blat_qresult)

1

Like Python lists, you can retrieve items (hits) from a QueryResult using the slice notation:

>>> blast_qresult[0] # retrieves the top hit

Hit(id=’gi|262205317|ref|NR_030195.1|’, query_id=’42291’, 1 hsps)

>>> blast_qresult[-1] # retrieves the last hit

Hit(id=’gi|397513516|ref|XM_003827011.1|’, query_id=’42291’, 1 hsps)

To retrieve multiple hits, you can slice QueryResult objects using the slice notation as well. In this case,
the slice will return a new QueryResult object containing only the sliced hits:

>>> blast_slice = blast_qresult[:3] # slices the first three hits

>>> print(blast_slice)

Program: blastn (2.2.27+)

Query: 42291 (61)

mystery_seq

Target: refseq_rna

Hits: ---- ----- ----------------------------------------------------------

# # HSP ID + description

---- ----- ----------------------------------------------------------

0 1 gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 52...

1 1 gi|301171311|ref|NR_035856.1| Pan troglodytes microRNA...

2 1 gi|270133242|ref|NR_032573.1| Macaca mulatta microRNA ...

Like Python dictionaries, you can also retrieve hits using the hit’s ID. This is particularly useful if you
know a given hit ID exists within a search query results:

>>> blast_qresult["gi|262205317|ref|NR_030195.1|"]

Hit(id=’gi|262205317|ref|NR_030195.1|’, query_id=’42291’, 1 hsps)

You can also get a full list of Hit objects using hits and a full list of Hit IDs using hit_keys:

>>> blast_qresult.hits

[...] # list of all hits

>>> blast_qresult.hit_keys

[...] # list of all hit IDs

What if you just want to check whether a particular hit is present in the query results? You can do a
simple Python membership test using the in keyword:

>>> "gi|262205317|ref|NR_030195.1|" in blast_qresult

True

>>> "gi|262205317|ref|NR_030194.1|" in blast_qresult

False

Sometimes, knowing whether a hit is present is not enough; you also want to know the rank of the hit.
Here, the index method comes to the rescue:
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>>> blast_qresult.index("gi|301171437|ref|NR_035870.1|")

22

Remember that we’re using Python’s indexing style here, which is zero-based. This means our hit above
is ranked at no. 23, not 22.

Also, note that the hit rank you see here is based on the native hit ordering present in the original search
output file. Different search tools may order these hits based on different criteria.

If the native hit ordering doesn’t suit your taste, you can use the sort method of the QueryResult

object. It is very similar to Python’s list.sort method, with the addition of an option to create a new
sorted QueryResult object or not.

Here is an example of using QueryResult.sort to sort the hits based on each hit’s full sequence length.
For this particular sort, we’ll set the in_place flag to False so that sorting will return a new QueryResult

object and leave our initial object unsorted. We’ll also set the reverse flag to True so that we sort in
descending order.

>>> for hit in blast_qresult[:5]: # id and sequence length of the first five hits

... print("%s %i" % (hit.id, hit.seq_len))

...

gi|262205317|ref|NR_030195.1| 61

gi|301171311|ref|NR_035856.1| 60

gi|270133242|ref|NR_032573.1| 85

gi|301171322|ref|NR_035857.1| 86

gi|301171267|ref|NR_035851.1| 80

>>> sort_key = lambda hit: hit.seq_len

>>> sorted_qresult = blast_qresult.sort(key=sort_key, reverse=True, in_place=False)

>>> for hit in sorted_qresult[:5]:

... print("%s %i" % (hit.id, hit.seq_len))

...

gi|397513516|ref|XM_003827011.1| 6002

gi|390332045|ref|XM_776818.2| 4082

gi|390332043|ref|XM_003723358.1| 4079

gi|356517317|ref|XM_003527287.1| 3251

gi|356543101|ref|XM_003539954.1| 2936

The advantage of having the in_place flag here is that we’re preserving the native ordering, so we may
use it again later. You should note that this is not the default behavior of QueryResult.sort, however,
which is why we needed to set the in_place flag to True explicitly.

At this point, you’ve known enough about QueryResult objects to make it work for you. But before we
go on to the next object in the Bio.SearchIO model, let’s take a look at two more sets of methods that
could make it even easier to work with QueryResult objects: the filter and map methods.

If you’re familiar with Python’s list comprehensions, generator expressions or the built in filter and
map functions, you’ll know how useful they are for working with list-like objects (if you’re not, check them
out!). You can use these built in methods to manipulate QueryResult objects, but you’ll end up with regular
Python lists and lose the ability to do more interesting manipulations.

That’s why, QueryResult objects provide its own flavor of filter and map methods. Analogous to
filter, there are hit_filter and hsp_filter methods. As their name implies, these methods filter its
QueryResult object either on its Hit objects or HSP objects. Similarly, analogous to map, QueryResult

objects also provide the hit_map and hsp_map methods. These methods apply a given function to all hits
or HSPs in a QueryResult object, respectively.

Let’s see these methods in action, beginning with hit_filter. This method accepts a callback function
that checks whether a given Hit object passes the condition you set or not. In other words, the function
must accept as its argument a single Hit object and returns True or False.
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Here is an example of using hit_filter to filter out Hit objects that only have one HSP:

>>> filter_func = lambda hit: len(hit.hsps) > 1 # the callback function

>>> len(blast_qresult) # no. of hits before filtering

100

>>> filtered_qresult = blast_qresult.hit_filter(filter_func)

>>> len(filtered_qresult) # no. of hits after filtering

37

>>> for hit in filtered_qresult[:5]: # quick check for the hit lengths

... print("%s %i" % (hit.id, len(hit.hsps)))

gi|301171322|ref|NR_035857.1| 2

gi|262205330|ref|NR_030198.1| 2

gi|301171447|ref|NR_035871.1| 2

gi|262205298|ref|NR_030190.1| 2

gi|270132717|ref|NR_032716.1| 2

hsp_filter works the same as hit_filter, only instead of looking at the Hit objects, it performs
filtering on the HSP objects in each hits.

As for the map methods, they too accept a callback function as their arguments. However, instead of
returning True or False, the callback function must return the modified Hit or HSP object (depending on
whether you’re using hit_map or hsp_map).

Let’s see an example where we’re using hit_map to rename the hit IDs:

>>> def map_func(hit):

... hit.id = hit.id.split("|")[3] # renames "gi|301171322|ref|NR_035857.1|" to "NR_035857.1"

... return hit

...

>>> mapped_qresult = blast_qresult.hit_map(map_func)

>>> for hit in mapped_qresult[:5]:

... print(hit.id)

NR_030195.1

NR_035856.1

NR_032573.1

NR_035857.1

NR_035851.1

Again, hsp_map works the same as hit_map, but on HSP objects instead of Hit objects.

8.1.2 Hit

Hit objects represent all query results from a single database entry. They are the second-level container in
the Bio.SearchIO object hierarchy. You’ve seen that they are contained by QueryResult objects, but they
themselves contain HSP objects.

Let’s see what they look like, beginning with our BLAST search:

>>> from Bio import SearchIO

>>> blast_qresult = SearchIO.read("my_blast.xml", "blast-xml")

>>> blast_hit = blast_qresult[3] # fourth hit from the query result

>>> print(blast_hit)

Query: 42291

mystery_seq

Hit: gi|301171322|ref|NR_035857.1| (86)

Pan troglodytes microRNA mir-520c (MIR520C), microRNA
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HSPs: ---- -------- --------- ------ --------------- ---------------------

# E-value Bit score Span Query range Hit range

---- -------- --------- ------ --------------- ---------------------

0 8.9e-20 100.47 60 [1:61] [13:73]

1 3.3e-06 55.39 60 [0:60] [13:73]

You see that we’ve got the essentials covered here:

• The query ID and description is present. A hit is always tied to a query, so we want to keep track
of the originating query as well. These values can be accessed from a hit using the query_id and
query_description attributes.

• We also have the unique hit ID, description, and full sequence lengths. They can be accessed using id,
description, and seq_len, respectively.

• Finally, there’s a table containing quick information about the HSPs this hit contains. In each row,
we’ve got the important HSP details listed: the HSP index, its e-value, its bit score, its span (the
alignment length including gaps), its query coordinates, and its hit coordinates.

Now let’s contrast this with the BLAT search. Remember that in the BLAT search we had one hit with
17 HSPs.

>>> blat_qresult = SearchIO.read("my_blat.psl", "blat-psl")

>>> blat_hit = blat_qresult[0] # the only hit

>>> print(blat_hit)

Query: mystery_seq

<unknown description>

Hit: chr19 (59128983)

<unknown description>

HSPs: ---- -------- --------- ------ --------------- ---------------------

# E-value Bit score Span Query range Hit range

---- -------- --------- ------ --------------- ---------------------

0 ? ? ? [0:61] [54204480:54204541]

1 ? ? ? [0:61] [54233104:54264463]

2 ? ? ? [0:61] [54254477:54260071]

3 ? ? ? [1:61] [54210720:54210780]

4 ? ? ? [0:60] [54198476:54198536]

5 ? ? ? [0:61] [54265610:54265671]

6 ? ? ? [0:61] [54238143:54240175]

7 ? ? ? [0:60] [54189735:54189795]

8 ? ? ? [0:61] [54185425:54185486]

9 ? ? ? [0:60] [54197657:54197717]

10 ? ? ? [0:61] [54255662:54255723]

11 ? ? ? [0:61] [54201651:54201712]

12 ? ? ? [8:60] [54206009:54206061]

13 ? ? ? [10:61] [54178987:54179038]

14 ? ? ? [8:61] [54212018:54212071]

15 ? ? ? [8:51] [54234278:54234321]

16 ? ? ? [8:61] [54238143:54238196]

Here, we’ve got a similar level of detail as with the BLAST hit we saw earlier. There are some differences
worth explaining, though:

• The e-value and bit score column values. As BLAT HSPs do not have e-values and bit scores, the
display defaults to ‘?’.
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• What about the span column? The span values is meant to display the complete alignment length,
which consists of all residues and any gaps that may be present. The PSL format do not have this
information readily available and Bio.SearchIO does not attempt to try guess what it is, so we get a
‘?’ similar to the e-value and bit score columns.

In terms of Python objects, Hit behaves almost the same as Python lists, but contain HSP objects
exclusively. If you’re familiar with lists, you should encounter no difficulties working with the Hit object.

Just like Python lists, Hit objects are iterable, and each iteration returns one HSP object it contains:

>>> for hsp in blast_hit:

... hsp

HSP(hit_id=’gi|301171322|ref|NR_035857.1|’, query_id=’42291’, 1 fragments)

HSP(hit_id=’gi|301171322|ref|NR_035857.1|’, query_id=’42291’, 1 fragments)

You can invoke len on a Hit to see how many HSP objects it has:

>>> len(blast_hit)

2

>>> len(blat_hit)

17

You can use the slice notation on Hit objects, whether to retrieve single HSP or multiple HSP objects.
Like QueryResult, if you slice for multiple HSP, a new Hit object will be returned containing only the sliced
HSP objects:

>>> blat_hit[0] # retrieve single items

HSP(hit_id=’chr19’, query_id=’mystery_seq’, 1 fragments)

>>> sliced_hit = blat_hit[4:9] # retrieve multiple items

>>> len(sliced_hit)

5

>>> print(sliced_hit)

Query: mystery_seq

<unknown description>

Hit: chr19 (59128983)

<unknown description>

HSPs: ---- -------- --------- ------ --------------- ---------------------

# E-value Bit score Span Query range Hit range

---- -------- --------- ------ --------------- ---------------------

0 ? ? ? [0:60] [54198476:54198536]

1 ? ? ? [0:61] [54265610:54265671]

2 ? ? ? [0:61] [54238143:54240175]

3 ? ? ? [0:60] [54189735:54189795]

4 ? ? ? [0:61] [54185425:54185486]

You can also sort the HSP inside a Hit, using the exact same arguments like the sort method you saw in
the QueryResult object.

Finally, there are also the filter and map methods you can use on Hit objects. Unlike in the QueryResult
object, Hit objects only have one variant of filter (Hit.filter) and one variant of map (Hit.map). Both
of Hit.filter and Hit.map work on the HSP objects a Hit has.

8.1.3 HSP

HSP (high-scoring pair) represents region(s) in the hit sequence that contains significant alignment(s) to
the query sequence. It contains the actual match between your query sequence and a database entry. As
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this match is determined by the sequence search tool’s algorithms, the HSP object contains the bulk of the
statistics computed by the search tool. This also makes the distinction between HSP objects from different
search tools more apparent compared to the differences you’ve seen in QueryResult or Hit objects.

Let’s see some examples from our BLAST and BLAT searches. We’ll look at the BLAST HSP first:

>>> from Bio import SearchIO

>>> blast_qresult = SearchIO.read("my_blast.xml", "blast-xml")

>>> blast_hsp = blast_qresult[0][0] # first hit, first hsp

>>> print(blast_hsp)

Query: 42291 mystery_seq

Hit: gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 520b (MIR520...

Query range: [0:61] (1)

Hit range: [0:61] (1)

Quick stats: evalue 4.9e-23; bitscore 111.29

Fragments: 1 (61 columns)

Query - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Hit - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

Just like QueryResult and Hit, invoking print on an HSP shows its general details:

• There are the query and hit IDs and descriptions. We need these to identify our HSP.

• We’ve also got the matching range of the query and hit sequences. The slice notation we’re using here
is an indication that the range is displayed using Python’s indexing style (zero-based, half open). The
number inside the parenthesis denotes the strand. In this case, both sequences have the plus strand.

• Some quick statistics are available: the e-value and bitscore.

• There is information about the HSP fragments. Ignore this for now; it will be explained later on.

• And finally, we have the query and hit sequence alignment itself.

These details can be accessed on their own using the dot notation, just like in QueryResult and Hit:

>>> blast_hsp.query_range

(0, 61)

>>> blast_hsp.evalue

4.91307e-23

They’re not the only attributes available, though. HSP objects come with a default set of properties that
makes it easy to probe their various details. Here are some examples:

>>> blast_hsp.hit_start # start coordinate of the hit sequence

0

>>> blast_hsp.query_span # how many residues in the query sequence

61

>>> blast_hsp.aln_span # how long the alignment is

61

Check out the HSP documentation for a full list of these predefined properties.
Furthermore, each sequence search tool usually computes its own statistics / details for its HSP objects.

For example, an XML BLAST search also outputs the number of gaps and identical residues. These attributes
can be accessed like so:
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>>> blast_hsp.gap_num # number of gaps

0

>>> blast_hsp.ident_num # number of identical residues

61

These details are format-specific; they may not be present in other formats. To see which details are
available for a given sequence search tool, you should check the format’s documentation in Bio.SearchIO.
Alternatively, you may also use .__dict__.keys() for a quick list of what’s available:

>>> blast_hsp.__dict__.keys()

[’bitscore’, ’evalue’, ’ident_num’, ’gap_num’, ’bitscore_raw’, ’pos_num’, ’_items’]

Finally, you may have noticed that the query and hit attributes of our HSP are not just regular strings:

>>> blast_hsp.query

SeqRecord(seq=Seq(’CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT...GGG’, DNAAlphabet()), id=’42291’, name=’aligned query sequence’, description=’mystery_seq’, dbxrefs=[])

>>> blast_hsp.hit

SeqRecord(seq=Seq(’CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT...GGG’, DNAAlphabet()), id=’gi|262205317|ref|NR_030195.1|’, name=’aligned hit sequence’, description=’Homo sapiens microRNA 520b (MIR520B), microRNA’, dbxrefs=[])

They are SeqRecord objects you saw earlier in Section 4! This means that you can do all sorts of
interesting things you can do with SeqRecord objects on HSP.query and/or HSP.hit.

It should not surprise you now that the HSP object has an alignment property which is a MultipleSeqAlignment
object:

>>> print(blast_hsp.aln)

DNAAlphabet() alignment with 2 rows and 61 columns

CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAG...GGG 42291

CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAG...GGG gi|262205317|ref|NR_030195.1|

Having probed the BLAST HSP, let’s now take a look at HSPs from our BLAT results for a different
kind of HSP. As usual, we’ll begin by invoking print on it:

>>> blat_qresult = SearchIO.read("my_blat.psl", "blat-psl")

>>> blat_hsp = blat_qresult[0][0] # first hit, first hsp

>>> print(blat_hsp)

Query: mystery_seq <unknown description>

Hit: chr19 <unknown description>

Query range: [0:61] (1)

Hit range: [54204480:54204541] (1)

Quick stats: evalue ?; bitscore ?

Fragments: 1 (? columns)

Some of the outputs you may have already guessed. We have the query and hit IDs and descriptions and
the sequence coordinates. Values for evalue and bitscore is ‘?’ as BLAT HSPs do not have these attributes.
But The biggest difference here is that you don’t see any sequence alignments displayed. If you look closer,
PSL formats themselves do not have any hit or query sequences, so Bio.SearchIO won’t create any sequence
or alignment objects. What happens if you try to access HSP.query, HSP.hit, or HSP.aln? You’ll get the
default values for these attributes, which is None:

>>> blat_hsp.hit is None

True

>>> blat_hsp.query is None

True

>>> blat_hsp.aln is None

True
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This does not affect other attributes, though. For example, you can still access the length of the query
or hit alignment. Despite not displaying any attributes, the PSL format still have this information so
Bio.SearchIO can extract them:

>>> blat_hsp.query_span # length of query match

61

>>> blat_hsp.hit_span # length of hit match

61

Other format-specific attributes are still present as well:

>>> blat_hsp.score # PSL score

61

>>> blat_hsp.mismatch_num # the mismatch column

0

So far so good? Things get more interesting when you look at another ‘variant’ of HSP present in our
BLAT results. You might recall that in BLAT searches, sometimes we get our results separated into ‘blocks’.
These blocks are essentially alignment fragments that may have some intervening sequence between them.

Let’s take a look at a BLAT HSP that contains multiple blocks to see how Bio.SearchIO deals with this:

>>> blat_hsp2 = blat_qresult[0][1] # first hit, second hsp

>>> print(blat_hsp2)

Query: mystery_seq <unknown description>

Hit: chr19 <unknown description>

Query range: [0:61] (1)

Hit range: [54233104:54264463] (1)

Quick stats: evalue ?; bitscore ?

Fragments: --- -------------- ---------------------- ----------------------

# Span Query range Hit range

--- -------------- ---------------------- ----------------------

0 ? [0:18] [54233104:54233122]

1 ? [18:61] [54264420:54264463]

What’s happening here? We still some essential details covered: the IDs and descriptions, the coordinates,
and the quick statistics are similar to what you’ve seen before. But the fragments detail is all different.
Instead of showing ‘Fragments: 1’, we now have a table with two data rows.

This is how Bio.SearchIO deals with HSPs having multiple fragments. As mentioned before, an HSP
alignment may be separated by intervening sequences into fragments. The intervening sequences are not
part of the query-hit match, so they should not be considered part of query nor hit sequence. However, they
do affect how we deal with sequence coordinates, so we can’t ignore them.

Take a look at the hit coordinate of the HSP above. In the Hit range: field, we see that the coordinate
is [54233104:54264463]. But looking at the table rows, we see that not the entire region spanned by this
coordinate matches our query. Specifically, the intervening region spans from 54233122 to 54264420.

Why then, is the query coordinates seem to be contiguous, you ask? This is perfectly fine. In this case
it means that the query match is contiguous (no intervening regions), while the hit match is not.

All these attributes are accessible from the HSP directly, by the way:

>>> blat_hsp2.hit_range # hit start and end coordinates of the entire HSP

(54233104, 54264463)

>>> blat_hsp2.hit_range_all # hit start and end coordinates of each fragment

[(54233104, 54233122), (54264420, 54264463)]

>>> blat_hsp2.hit_span # hit span of the entire HSP
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31359

>>> blat_hsp2.hit_span_all # hit span of each fragment

[18, 43]

>>> blat_hsp2.hit_inter_ranges # start and end coordinates of intervening regions in the hit sequence

[(54233122, 54264420)]

>>> blat_hsp2.hit_inter_spans # span of intervening regions in the hit sequence

[31298]

Most of these attributes are not readily available from the PSL file we have, but Bio.SearchIO calculates
them for you on the fly when you parse the PSL file. All it needs are the start and end coordinates of each
fragment.

What about the query, hit, and aln attributes? If the HSP has multiple fragments, you won’t be able
to use these attributes as they only fetch single SeqRecord or MultipleSeqAlignment objects. However,
you can use their *_all counterparts: query_all, hit_all, and aln_all. These properties will return a
list containing SeqRecord or MultipleSeqAlignment objects from each of the HSP fragment. There are
other attributes that behave similarly, i.e. they only work for HSPs with one fragment. Check out the HSP

documentation for a full list.
Finally, to check whether you have multiple fragments or not, you can use the is_fragmented property

like so:

>>> blat_hsp2.is_fragmented # BLAT HSP with 2 fragments

True

>>> blat_hsp.is_fragmented # BLAT HSP from earlier, with one fragment

False

Before we move on, you should also know that we can use the slice notation on HSP objects, just like
QueryResult or Hit objects. When you use this notation, you’ll get an HSPFragment object in return, the
last component of the object model.

8.1.4 HSPFragment

HSPFragment represents a single, contiguous match between the query and hit sequences. You could consider
it the core of the object model and search result, since it is the presence of these fragments that determine
whether your search have results or not.

In most cases, you don’t have to deal with HSPFragment objects directly since not that many sequence
search tools fragment their HSPs. When you do have to deal with them, what you should remember is
that HSPFragment objects were written with to be as compact as possible. In most cases, they only contain
attributes directly related to sequences: strands, reading frames, alphabets, coordinates, the sequences
themselves, and their IDs and descriptions.

These attributes are readily shown when you invoke print on an HSPFragment. Here’s an example, taken
from our BLAST search:

>>> from Bio import SearchIO

>>> blast_qresult = SearchIO.read("my_blast.xml", "blast-xml")

>>> blast_frag = blast_qresult[0][0][0] # first hit, first hsp, first fragment

>>> print(blast_frag)

Query: 42291 mystery_seq

Hit: gi|262205317|ref|NR_030195.1| Homo sapiens microRNA 520b (MIR520...

Query range: [0:61] (1)

Hit range: [0:61] (1)

Fragments: 1 (61 columns)

Query - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Hit - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG
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At this level, the BLAT fragment looks quite similar to the BLAST fragment, save for the query and hit
sequences which are not present:

>>> blat_qresult = SearchIO.read("my_blat.psl", "blat-psl")

>>> blat_frag = blat_qresult[0][0][0] # first hit, first hsp, first fragment

>>> print(blat_frag)

Query: mystery_seq <unknown description>

Hit: chr19 <unknown description>

Query range: [0:61] (1)

Hit range: [54204480:54204541] (1)

Fragments: 1 (? columns)

In all cases, these attributes are accessible using our favorite dot notation. Some examples:

>>> blast_frag.query_start # query start coordinate

0

>>> blast_frag.hit_strand # hit sequence strand

1

>>> blast_frag.hit # hit sequence, as a SeqRecord object

SeqRecord(seq=Seq(’CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTT...GGG’, DNAAlphabet()), id=’gi|262205317|ref|NR_030195.1|’, name=’aligned hit sequence’, description=’Homo sapiens microRNA 520b (MIR520B), microRNA’, dbxrefs=[])

8.2 A note about standards and conventions

Before we move on to the main functions, there is something you ought to know about the standards
Bio.SearchIO uses. If you’ve worked with multiple sequence search tools, you might have had to deal with
the many different ways each program deals with things like sequence coordinates. It might not have been
a pleasant experience as these search tools usually have their own standards. For example, one tools might
use one-based coordinates, while the other uses zero-based coordinates. Or, one program might reverse the
start and end coordinates if the strand is minus, while others don’t. In short, these often creates unnecessary
mess must be dealt with.

We realize this problem ourselves and we intend to address it in Bio.SearchIO. After all, one of the goals
of Bio.SearchIO is to create a common, easy to use interface to deal with various search output files. This
means creating standards that extend beyond the object model you just saw.

Now, you might complain, ”Not another standard!”. Well, eventually we have to choose one convention
or the other, so this is necessary. Plus, we’re not creating something entirely new here; just adopting a
standard we think is best for a Python programmer (it is Biopython, after all).

There are three implicit standards that you can expect when working with Bio.SearchIO:

• The first one pertains to sequence coordinates. In Bio.SearchIO, all sequence coordinates follows
Python’s coordinate style: zero-based and half open. For example, if in a BLAST XML output file the
start and end coordinates of an HSP are 10 and 28, they would become 9 and 28 in Bio.SearchIO. The
start coordinate becomes 9 because Python indices start from zero, while the end coordinate remains
28 as Python slices omit the last item in an interval.

• The second is on sequence coordinate orders. In Bio.SearchIO, start coordinates are always less than
or equal to end coordinates. This isn’t always the case with all sequence search tools, as some of them
have larger start coordinates when the sequence strand is minus.

• The last one is on strand and reading frame values. For strands, there are only four valid choices: 1

(plus strand), -1 (minus strand), 0 (protein sequences), and None (no strand). For reading frames, the
valid choices are integers from -3 to 3 and None.

Note that these standards only exist in Bio.SearchIO objects. If you write Bio.SearchIO objects into
an output format, Bio.SearchIO will use the format’s standard for the output. It does not force its standard
over to your output file.
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8.3 Reading search output files

There are two functions you can use for reading search output files into Bio.SearchIO objects: read and
parse. They’re essentially similar to read and parse functions in other submodules like Bio.SeqIO or
Bio.AlignIO. In both cases, you need to supply the search output file name and the file format name, both
as Python strings. You can check the documentation for a list of format names Bio.SearchIO recognizes.

Bio.SearchIO.read is used for reading search output files with only one query and returns a QueryResult

object. You’ve seen read used in our previous examples. What you haven’t seen is that read may also accept
additional keyword arguments, depending on the file format.

Here are some examples. In the first one, we use read just like previously to read a BLAST tabular
output file. In the second one, we use a keyword argument to modify so it parses the BLAST tabular variant
with comments in it:

>>> from Bio import SearchIO

>>> qresult = SearchIO.read("tab_2226_tblastn_003.txt", "blast-tab")

>>> qresult

QueryResult(id=’gi|16080617|ref|NP_391444.1|’, 3 hits)

>>> qresult2 = SearchIO.read("tab_2226_tblastn_007.txt", "blast-tab", comments=True)

>>> qresult2

QueryResult(id=’gi|16080617|ref|NP_391444.1|’, 3 hits)

These keyword arguments differs among file formats. Check the format documentation to see if it has
keyword arguments that modifies its parser’s behavior.

As for the Bio.SearchIO.parse, it is used for reading search output files with any number of queries. The
function returns a generator object that yields a QueryResult object in each iteration. Like Bio.SearchIO.read,
it also accepts format-specific keyword arguments:

>>> from Bio import SearchIO

>>> qresults = SearchIO.parse("tab_2226_tblastn_001.txt", "blast-tab")

>>> for qresult in qresults:

... print(qresult.id)

gi|16080617|ref|NP_391444.1|

gi|11464971:4-101

>>> qresults2 = SearchIO.parse("tab_2226_tblastn_005.txt", "blast-tab", comments=True)

>>> for qresult in qresults2:

... print(qresult.id)

random_s00

gi|16080617|ref|NP_391444.1|

gi|11464971:4-101

8.4 Dealing with large search output files with indexing

Sometimes, you’re handed a search output file containing hundreds or thousands of queries that you need to
parse. You can of course use Bio.SearchIO.parse for this file, but that would be grossly inefficient if you
need to access only a few of the queries. This is because parse will parse all queries it sees before it fetches
your query of interest.

In this case, the ideal choice would be to index the file using Bio.SearchIO.index or Bio.SearchIO.index_db.
If the names sound familiar, it’s because you’ve seen them before in Section 5.4.2. These functions also behave
similarly to their Bio.SeqIO counterparts, with the addition of format-specific keyword arguments.

Here are some examples. You can use index with just the filename and format name:

>>> from Bio import SearchIO

>>> idx = SearchIO.index("tab_2226_tblastn_001.txt", "blast-tab")
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>>> sorted(idx.keys())

[’gi|11464971:4-101’, ’gi|16080617|ref|NP_391444.1|’]

>>> idx["gi|16080617|ref|NP_391444.1|"]

QueryResult(id=’gi|16080617|ref|NP_391444.1|’, 3 hits)

>>> idx.close()

Or also with the format-specific keyword argument:

>>> idx = SearchIO.index("tab_2226_tblastn_005.txt", "blast-tab", comments=True)

>>> sorted(idx.keys())

[’gi|11464971:4-101’, ’gi|16080617|ref|NP_391444.1|’, ’random_s00’]

>>> idx["gi|16080617|ref|NP_391444.1|"]

QueryResult(id=’gi|16080617|ref|NP_391444.1|’, 3 hits)

>>> idx.close()

Or with the key_function argument, as in Bio.SeqIO:

>>> key_function = lambda id: id.upper() # capitalizes the keys

>>> idx = SearchIO.index("tab_2226_tblastn_001.txt", "blast-tab", key_function=key_function)

>>> sorted(idx.keys())

[’GI|11464971:4-101’, ’GI|16080617|REF|NP_391444.1|’]

>>> idx["GI|16080617|REF|NP_391444.1|"]

QueryResult(id=’gi|16080617|ref|NP_391444.1|’, 3 hits)

>>> idx.close()

Bio.SearchIO.index_db works like as index, only it writes the query offsets into an SQLite database
file.

8.5 Writing and converting search output files

It is occasionally useful to be able to manipulate search results from an output file and write it again to a
new file. Bio.SearchIO provides a write function that lets you do exactly this. It takes as its arguments an
iterable returning QueryResult objects, the output filename to write to, the format name to write to, and
optionally some format-specific keyword arguments. It returns a four-item tuple, which denotes the number
or QueryResult, Hit, HSP, and HSPFragment objects that were written.

>>> from Bio import SearchIO

>>> qresults = SearchIO.parse("mirna.xml", "blast-xml") # read XML file

>>> SearchIO.write(qresults, "results.tab", "blast-tab") # write to tabular file

(3, 239, 277, 277)

You should note different file formats require different attributes of the QueryResult, Hit, HSP and
HSPFragment objects. If these attributes are not present, writing won’t work. In other words, you can’t
always write to the output format that you want. For example, if you read a BLAST XML file, you wouldn’t
be able to write the results to a PSL file as PSL files require attributes not calculated by BLAST (e.g. the
number of repeat matches). You can always set these attributes manually, if you really want to write to
PSL, though.

Like read, parse, index, and index_db, write also accepts format-specific keyword arguments. Check
out the documentation for a complete list of formats Bio.SearchIO can write to and their arguments.

Finally, Bio.SearchIO also provides a convert function, which is simply a shortcut for Bio.SearchIO.parse
and Bio.SearchIO.write. Using the convert function, our example above would be:
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>>> from Bio import SearchIO

>>> SearchIO.convert("mirna.xml", "blast-xml", "results.tab", "blast-tab")

(3, 239, 277, 277)

As convert uses write, it is only limited to format conversions that have all the required attributes.
Here, the BLAST XML file provides all the default values a BLAST tabular file requires, so it works just
fine. However, other format conversions are less likely to work since you need to manually assign the required
attributes first.
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Chapter 9

Accessing NCBI’s Entrez databases

Entrez (https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html) is a data retrieval system that pro-
vides users access to NCBI’s databases such as PubMed, GenBank, GEO, and many others. You can access
Entrez from a web browser to manually enter queries, or you can use Biopython’s Bio.Entrez module for
programmatic access to Entrez. The latter allows you for example to search PubMed or download GenBank
records from within a Python script.

The Bio.Entrez module makes use of the Entrez Programming Utilities (also known as EUtils), consisting
of eight tools that are described in detail on NCBI’s page at https://www.ncbi.nlm.nih.gov/books/

NBK25501/. Each of these tools corresponds to one Python function in the Bio.Entrez module, as described
in the sections below. This module makes sure that the correct URL is used for the queries, and that not
more than one request is made every three seconds, as required by NCBI.

The output returned by the Entrez Programming Utilities is typically in XML format. To parse such
output, you have several options:

1. Use Bio.Entrez’s parser to parse the XML output into a Python object;

2. Use the DOM (Document Object Model) parser in Python’s standard library;

3. Use the SAX (Simple API for XML) parser in Python’s standard library;

4. Read the XML output as raw text, and parse it by string searching and manipulation.

For the DOM and SAX parsers, see the Python documentation. The parser in Bio.Entrez is discussed
below.

NCBI uses DTD (Document Type Definition) files to describe the structure of the information contained
in XML files. Most of the DTD files used by NCBI are included in the Biopython distribution. The
Bio.Entrez parser makes use of the DTD files when parsing an XML file returned by NCBI Entrez.

Occasionally, you may find that the DTD file associated with a specific XML file is missing in the
Biopython distribution. In particular, this may happen when NCBI updates its DTD files. If this hap-
pens, Entrez.read will show a warning message with the name and URL of the missing DTD file. The
parser will proceed to access the missing DTD file through the internet, allowing the parsing of the XML
file to continue. However, the parser is much faster if the DTD file is available locally. For this pur-
pose, please download the DTD file from the URL in the warning message and place it in the directory
...site-packages/Bio/Entrez/DTDs, containing the other DTD files. If you don’t have write access to
this directory, you can also place the DTD file in ~/.biopython/Bio/Entrez/DTDs, where ~ represents your
home directory. Since this directory is read before the directory ...site-packages/Bio/Entrez/DTDs, you
can also put newer versions of DTD files there if the ones in ...site-packages/Bio/Entrez/DTDs become
outdated. Alternatively, if you installed Biopython from source, you can add the DTD file to the source
code’s Bio/Entrez/DTDs directory, and reinstall Biopython. This will install the new DTD file in the correct
location together with the other DTD files.
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The Entrez Programming Utilities can also generate output in other formats, such as the Fasta or
GenBank file formats for sequence databases, or the MedLine format for the literature database, discussed
in Section 9.13.

9.1 Entrez Guidelines

Before using Biopython to access the NCBI’s online resources (via Bio.Entrez or some of the other modules),
please read the NCBI’s Entrez User Requirements. If the NCBI finds you are abusing their systems, they
can and will ban your access!

To paraphrase:

• For any series of more than 100 requests, do this at weekends or outside USA peak times. This is up
to you to obey.

• Use the https://eutils.ncbi.nlm.nih.gov address, not the standard NCBI Web address. Biopython
uses this web address.

• If you are using a API key, you can make at most 10 queries per second, otherwise at most 3 queries per
second. This is automatically enforced by Biopython. Include api_key="MyAPIkey" in the argument
list or set it as a module level variable:

>>> from Bio import Entrez

>>> Entrez.api_key = "MyAPIkey"

• Use the optional email parameter so the NCBI can contact you if there is a problem. You can either ex-
plicitly set this as a parameter with each call to Entrez (e.g. include email="A.N.Other@example.com"
in the argument list), or you can set a global email address:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com"

Bio.Entrez will then use this email address with each call to Entrez. The example.com address is
a reserved domain name specifically for documentation (RFC 2606). Please DO NOT use a random
email – it’s better not to give an email at all. The email parameter has been mandatory since June 1,
2010. In case of excessive usage, NCBI will attempt to contact a user at the e-mail address provided
prior to blocking access to the E-utilities.

• If you are using Biopython within some larger software suite, use the tool parameter to specify this.
You can either explicitly set the tool name as a parameter with each call to Entrez (e.g. include
tool="MyLocalScript" in the argument list), or you can set a global tool name:

>>> from Bio import Entrez

>>> Entrez.tool = "MyLocalScript"

The tool parameter will default to Biopython.

• For large queries, the NCBI also recommend using their session history feature (the WebEnv session
cookie string, see Section 9.16). This is only slightly more complicated.

In conclusion, be sensible with your usage levels. If you plan to download lots of data, consider other
options. For example, if you want easy access to all the human genes, consider fetching each chromosome
by FTP as a GenBank file, and importing these into your own BioSQL database (see Section 20.5).
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9.2 EInfo: Obtaining information about the Entrez databases

EInfo provides field index term counts, last update, and available links for each of NCBI’s databases. In
addition, you can use EInfo to obtain a list of all database names accessible through the Entrez utilities:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.einfo()

>>> result = handle.read()

>>> handle.close()

The variable result now contains a list of databases in XML format:

>>> print(result)

<?xml version="1.0"?>

<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN"

"https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">

<eInfoResult>

<DbList>

<DbName>pubmed</DbName>

<DbName>protein</DbName>

<DbName>nucleotide</DbName>

<DbName>nuccore</DbName>

<DbName>nucgss</DbName>

<DbName>nucest</DbName>

<DbName>structure</DbName>

<DbName>genome</DbName>

<DbName>books</DbName>

<DbName>cancerchromosomes</DbName>

<DbName>cdd</DbName>

<DbName>gap</DbName>

<DbName>domains</DbName>

<DbName>gene</DbName>

<DbName>genomeprj</DbName>

<DbName>gensat</DbName>

<DbName>geo</DbName>

<DbName>gds</DbName>

<DbName>homologene</DbName>

<DbName>journals</DbName>

<DbName>mesh</DbName>

<DbName>ncbisearch</DbName>

<DbName>nlmcatalog</DbName>

<DbName>omia</DbName>

<DbName>omim</DbName>

<DbName>pmc</DbName>

<DbName>popset</DbName>

<DbName>probe</DbName>

<DbName>proteinclusters</DbName>

<DbName>pcassay</DbName>

<DbName>pccompound</DbName>

<DbName>pcsubstance</DbName>

<DbName>snp</DbName>

<DbName>taxonomy</DbName>
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<DbName>toolkit</DbName>

<DbName>unigene</DbName>

<DbName>unists</DbName>

</DbList>

</eInfoResult>

Since this is a fairly simple XML file, we could extract the information it contains simply by string
searching. Using Bio.Entrez’s parser instead, we can directly parse this XML file into a Python object:

>>> from Bio import Entrez

>>> handle = Entrez.einfo()

>>> record = Entrez.read(handle)

Now record is a dictionary with exactly one key:

>>> record.keys()

[’DbList’]

The values stored in this key is the list of database names shown in the XML above:

>>> record["DbList"]

[’pubmed’, ’protein’, ’nucleotide’, ’nuccore’, ’nucgss’, ’nucest’,

’structure’, ’genome’, ’books’, ’cancerchromosomes’, ’cdd’, ’gap’,

’domains’, ’gene’, ’genomeprj’, ’gensat’, ’geo’, ’gds’, ’homologene’,

’journals’, ’mesh’, ’ncbisearch’, ’nlmcatalog’, ’omia’, ’omim’, ’pmc’,

’popset’, ’probe’, ’proteinclusters’, ’pcassay’, ’pccompound’,

’pcsubstance’, ’snp’, ’taxonomy’, ’toolkit’, ’unigene’, ’unists’]

For each of these databases, we can use EInfo again to obtain more information:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.einfo(db="pubmed")

>>> record = Entrez.read(handle)

>>> record["DbInfo"]["Description"]

’PubMed bibliographic record’

>>> record["DbInfo"]["Count"]

’17989604’

>>> record["DbInfo"]["LastUpdate"]

’2008/05/24 06:45’

Try record["DbInfo"].keys() for other information stored in this record. One of the most useful is a list
of possible search fields for use with ESearch:

>>> for field in record["DbInfo"]["FieldList"]:

... print("%(Name)s, %(FullName)s, %(Description)s" % field)

...

ALL, All Fields, All terms from all searchable fields

UID, UID, Unique number assigned to publication

FILT, Filter, Limits the records

TITL, Title, Words in title of publication

WORD, Text Word, Free text associated with publication

MESH, MeSH Terms, Medical Subject Headings assigned to publication

MAJR, MeSH Major Topic, MeSH terms of major importance to publication
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AUTH, Author, Author(s) of publication

JOUR, Journal, Journal abbreviation of publication

AFFL, Affiliation, Author’s institutional affiliation and address

...

That’s a long list, but indirectly this tells you that for the PubMed database, you can do things like
Jones[AUTH] to search the author field, or Sanger[AFFL] to restrict to authors at the Sanger Centre. This
can be very handy - especially if you are not so familiar with a particular database.

9.3 ESearch: Searching the Entrez databases

To search any of these databases, we use Bio.Entrez.esearch(). For example, let’s search in PubMed for
publications related to Biopython:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.esearch(db="pubmed", term="biopython")

>>> record = Entrez.read(handle)

>>> "19304878" in record["IdList"]

True

>>> print(record["IdList"])

[’28011774’, ’24929426’, ’24497503’, ’24267035’, ’24194598’, ..., ’14871861’]

In this output, you see lots of PubMed IDs (including 19304878 which is the PMID for the Biopython
application note), which can be retrieved by EFetch (see section 9.6).

You can also use ESearch to search GenBank. Here we’ll do a quick search for the matK gene in
Cypripedioideae orchids (see Section 9.2 about EInfo for one way to find out which fields you can search in
each Entrez database):

>>> handle = Entrez.esearch(db="nucleotide", term="Cypripedioideae[Orgn] AND matK[Gene]", idtype="acc")

>>> record = Entrez.read(handle)

>>> record["Count"]

’348’

>>> record["IdList"]

[’JQ660909.1’, ’JQ660908.1’, ’JQ660907.1’, ’JQ660906.1’, ..., ’JQ660890.1’]

Each of the IDs (JQ660909.1, JQ660908.1, JQ660907.1, . . . ) is a GenBank identifier (Accession number).
See section 9.6 for information on how to actually download these GenBank records.

Note that instead of a species name like Cypripedioideae[Orgn], you can restrict the search using
an NCBI taxon identifier, here this would be txid158330[Orgn]. This isn’t currently documented on the
ESearch help page - the NCBI explained this in reply to an email query. You can often deduce the search
term formatting by playing with the Entrez web interface. For example, including complete[prop] in a
genome search restricts to just completed genomes.

As a final example, let’s get a list of computational journal titles:

>>> handle = Entrez.esearch(db="nlmcatalog", term="computational[Journal]", retmax="20")

>>> record = Entrez.read(handle)

>>> print("{} computational journals found".format(record["Count"]))

117 computational Journals found

>>> print("The first 20 are\n{}".format(record["IdList"]))

[’101660833’, ’101664671’, ’101661657’, ’101659814’, ’101657941’,

’101653734’, ’101669877’, ’101649614’, ’101647835’, ’101639023’,
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’101627224’, ’101647801’, ’101589678’, ’101585369’, ’101645372’,

’101586429’, ’101582229’, ’101574747’, ’101564639’, ’101671907’]

Again, we could use EFetch to obtain more information for each of these journal IDs.
ESearch has many useful options — see the ESearch help page for more information.

9.4 EPost: Uploading a list of identifiers

EPost uploads a list of UIs for use in subsequent search strategies; see the EPost help page for more
information. It is available from Biopython through the Bio.Entrez.epost() function.

To give an example of when this is useful, suppose you have a long list of IDs you want to download
using EFetch (maybe sequences, maybe citations – anything). When you make a request with EFetch your
list of IDs, the database etc, are all turned into a long URL sent to the server. If your list of IDs is long,
this URL gets long, and long URLs can break (e.g. some proxies don’t cope well).

Instead, you can break this up into two steps, first uploading the list of IDs using EPost (this uses an
“HTML post” internally, rather than an “HTML get”, getting round the long URL problem). With the
history support, you can then refer to this long list of IDs, and download the associated data with EFetch.

Let’s look at a simple example to see how EPost works – uploading some PubMed identifiers:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> id_list = ["19304878", "18606172", "16403221", "16377612", "14871861", "14630660"]

>>> print(Entrez.epost("pubmed", id=",".join(id_list)).read())

<?xml version="1.0"?>

<!DOCTYPE ePostResult PUBLIC "-//NLM//DTD ePostResult, 11 May 2002//EN"

"https://www.ncbi.nlm.nih.gov/entrez/query/DTD/ePost_020511.dtd">

<ePostResult>

<QueryKey>1</QueryKey>

<WebEnv>NCID_01_206841095_130.14.22.101_9001_1242061629</WebEnv>

</ePostResult>

The returned XML includes two important strings, QueryKey and WebEnv which together define your history
session. You would extract these values for use with another Entrez call such as EFetch:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> id_list = ["19304878", "18606172", "16403221", "16377612", "14871861", "14630660"]

>>> search_results = Entrez.read(Entrez.epost("pubmed", id=",".join(id_list)))

>>> webenv = search_results["WebEnv"]

>>> query_key = search_results["QueryKey"]

Section 9.16 shows how to use the history feature.

9.5 ESummary: Retrieving summaries from primary IDs

ESummary retrieves document summaries from a list of primary IDs (see the ESummary help page for more
information). In Biopython, ESummary is available as Bio.Entrez.esummary(). Using the search result
above, we can for example find out more about the journal with ID 30367:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.esummary(db="nlmcatalog", id="101660833")
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>>> record = Entrez.read(handle)

>>> info = record[0]["TitleMainList"][0]

>>> print("Journal info\nid: {}\nTitle: {}".format(record[0]["Id"], info["Title"]))

Journal info

id: 101660833

Title: IEEE transactions on computational imaging.

9.6 EFetch: Downloading full records from Entrez

EFetch is what you use when you want to retrieve a full record from Entrez. This covers several possible
databases, as described on the main EFetch Help page.

For most of their databases, the NCBI support several different file formats. Requesting a specific file
format from Entrez using Bio.Entrez.efetch() requires specifying the rettype and/or retmode optional
arguments. The different combinations are described for each database type on the pages linked to on NCBI
efetch webpage.

One common usage is downloading sequences in the FASTA or GenBank/GenPept plain text formats
(which can then be parsed with Bio.SeqIO, see Sections 5.3.1 and 9.6). From the Cypripedioideae example
above, we can download GenBank record EU490707 using Bio.Entrez.efetch:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")

>>> print(handle.read())

LOCUS EU490707 1302 bp DNA linear PLN 26-JUL-2016

DEFINITION Selenipedium aequinoctiale maturase K (matK) gene, partial cds;

chloroplast.

ACCESSION EU490707

VERSION EU490707.1

KEYWORDS .

SOURCE chloroplast Selenipedium aequinoctiale

ORGANISM Selenipedium aequinoctiale

Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;

Spermatophyta; Magnoliophyta; Liliopsida; Asparagales; Orchidaceae;

Cypripedioideae; Selenipedium.

REFERENCE 1 (bases 1 to 1302)

AUTHORS Neubig,K.M., Whitten,W.M., Carlsward,B.S., Blanco,M.A., Endara,L.,

Williams,N.H. and Moore,M.

TITLE Phylogenetic utility of ycf1 in orchids: a plastid gene more

variable than matK

JOURNAL Plant Syst. Evol. 277 (1-2), 75-84 (2009)

REFERENCE 2 (bases 1 to 1302)

AUTHORS Neubig,K.M., Whitten,W.M., Carlsward,B.S., Blanco,M.A.,

Endara,C.L., Williams,N.H. and Moore,M.J.

TITLE Direct Submission

JOURNAL Submitted (14-FEB-2008) Department of Botany, University of

Florida, 220 Bartram Hall, Gainesville, FL 32611-8526, USA

FEATURES Location/Qualifiers

source 1..1302

/organism="Selenipedium aequinoctiale"

/organelle="plastid:chloroplast"

/mol_type="genomic DNA"
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/specimen_voucher="FLAS:Blanco 2475"

/db_xref="taxon:256374"

gene <1..>1302

/gene="matK"

CDS <1..>1302

/gene="matK"

/codon_start=1

/transl_table=11

/product="maturase K"

/protein_id="ACC99456.1"

/translation="IFYEPVEIFGYDNKSSLVLVKRLITRMYQQNFLISSVNDSNQKG

FWGHKHFFSSHFSSQMVSEGFGVILEIPFSSQLVSSLEEKKIPKYQNLRSIHSIFPFL

EDKFLHLNYVSDLLIPHPIHLEILVQILQCRIKDVPSLHLLRLLFHEYHNLNSLITSK

KFIYAFSKRKKRFLWLLYNSYVYECEYLFQFLRKQSSYLRSTSSGVFLERTHLYVKIE

HLLVVCCNSFQRILCFLKDPFMHYVRYQGKAILASKGTLILMKKWKFHLVNFWQSYFH

FWSQPYRIHIKQLSNYSFSFLGYFSSVLENHLVVRNQMLENSFIINLLTKKFDTIAPV

ISLIGSLSKAQFCTVLGHPISKPIWTDFSDSDILDRFCRICRNLCRYHSGSSKKQVLY

RIKYILRLSCARTLARKHKSTVRTFMRRLGSGLLEEFFMEEE"

ORIGIN

1 attttttacg aacctgtgga aatttttggt tatgacaata aatctagttt agtacttgtg

61 aaacgtttaa ttactcgaat gtatcaacag aattttttga tttcttcggt taatgattct

121 aaccaaaaag gattttgggg gcacaagcat tttttttctt ctcatttttc ttctcaaatg

181 gtatcagaag gttttggagt cattctggaa attccattct cgtcgcaatt agtatcttct

241 cttgaagaaa aaaaaatacc aaaatatcag aatttacgat ctattcattc aatatttccc

301 tttttagaag acaaattttt acatttgaat tatgtgtcag atctactaat accccatccc

361 atccatctgg aaatcttggt tcaaatcctt caatgccgga tcaaggatgt tccttctttg

421 catttattgc gattgctttt ccacgaatat cataatttga atagtctcat tacttcaaag

481 aaattcattt acgccttttc aaaaagaaag aaaagattcc tttggttact atataattct

541 tatgtatatg aatgcgaata tctattccag tttcttcgta aacagtcttc ttatttacga

601 tcaacatctt ctggagtctt tcttgagcga acacatttat atgtaaaaat agaacatctt

661 ctagtagtgt gttgtaattc ttttcagagg atcctatgct ttctcaagga tcctttcatg

721 cattatgttc gatatcaagg aaaagcaatt ctggcttcaa agggaactct tattctgatg

781 aagaaatgga aatttcatct tgtgaatttt tggcaatctt attttcactt ttggtctcaa

841 ccgtatagga ttcatataaa gcaattatcc aactattcct tctcttttct ggggtatttt

901 tcaagtgtac tagaaaatca tttggtagta agaaatcaaa tgctagagaa ttcatttata

961 ataaatcttc tgactaagaa attcgatacc atagccccag ttatttctct tattggatca

1021 ttgtcgaaag ctcaattttg tactgtattg ggtcatccta ttagtaaacc gatctggacc

1081 gatttctcgg attctgatat tcttgatcga ttttgccgga tatgtagaaa tctttgtcgt

1141 tatcacagcg gatcctcaaa aaaacaggtt ttgtatcgta taaaatatat acttcgactt

1201 tcgtgtgcta gaactttggc acggaaacat aaaagtacag tacgcacttt tatgcgaaga

1261 ttaggttcgg gattattaga agaattcttt atggaagaag aa

//

<BLANKLINE>

<BLANKLINE>

Please be aware that as of October 2016 GI identifiers are discontinued in favour of accession numbers.
You can still fetch sequences based on their GI, but new sequences are no longer given this identifier. You
should instead refer to them by the “Accession number” as done in the example.

The arguments rettype="gb" and retmode="text" let us download this record in the GenBank format.
Note that until Easter 2009, the Entrez EFetch API let you use “genbank” as the return type, however

the NCBI now insist on using the official return types of “gb” or “gbwithparts” (or “gp” for proteins) as
described on online. Also note that until Feb 2012, the Entrez EFetch API would default to returning plain
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text files, but now defaults to XML.
Alternatively, you could for example use rettype="fasta" to get the Fasta-format; see the EFetch

Sequences Help page for other options. Remember – the available formats depend on which database you
are downloading from - see the main EFetch Help page.

If you fetch the record in one of the formats accepted by Bio.SeqIO (see Chapter 5), you could directly
parse it into a SeqRecord:

>>> from Bio import SeqIO

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")

>>> record = SeqIO.read(handle, "genbank")

>>> handle.close()

>>> print(record.id)

EU490707.1

>>> print(record.name)

EU490707

>>> print(record.description)

Selenipedium aequinoctiale maturase K (matK) gene, partial cds; chloroplast

>>> print(len(record.features))

3

>>> print(repr(record.seq))

Seq(’ATTTTTTACGAACCTGTGGAAATTTTTGGTTATGACAATAAATCTAGTTTAGTA...GAA’, IUPACAmbiguousDNA())

Note that a more typical use would be to save the sequence data to a local file, and then parse it with
Bio.SeqIO. This can save you having to re-download the same file repeatedly while working on your script,
and places less load on the NCBI’s servers. For example:

import os

from Bio import SeqIO

from Bio import Entrez

Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

filename = "EU490707.gbk"

if not os.path.isfile(filename):

# Downloading...

net_handle = Entrez.efetch(

db="nucleotide", id="EU490707", rettype="gb", retmode="text"

)

out_handle = open(filename, "w")

out_handle.write(net_handle.read())

out_handle.close()

net_handle.close()

print("Saved")

print("Parsing...")

record = SeqIO.read(filename, "genbank")

print(record)

To get the output in XML format, which you can parse using the Bio.Entrez.read() function, use
retmode="xml":

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
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>>> handle = Entrez.efetch(db="nucleotide", id="EU490707", retmode="xml")

>>> record = Entrez.read(handle)

>>> handle.close()

>>> record[0]["GBSeq_definition"]

’Selenipedium aequinoctiale maturase K (matK) gene, partial cds; chloroplast’

>>> record[0]["GBSeq_source"]

’chloroplast Selenipedium aequinoctiale’

So, that dealt with sequences. For examples of parsing file formats specific to the other databases (e.g.
the MEDLINE format used in PubMed), see Section 9.13.

If you want to perform a search with Bio.Entrez.esearch(), and then download the records with
Bio.Entrez.efetch(), you should use the WebEnv history feature – see Section 9.16.

9.7 ELink: Searching for related items in NCBI Entrez

ELink, available from Biopython as Bio.Entrez.elink(), can be used to find related items in the NCBI
Entrez databases. For example, you can us this to find nucleotide entries for an entry in the gene database,
and other cool stuff.

Let’s use ELink to find articles related to the Biopython application note published in Bioinformatics in
2009. The PubMed ID of this article is 19304878:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> pmid = "19304878"

>>> record = Entrez.read(Entrez.elink(dbfrom="pubmed", id=pmid))

The record variable consists of a Python list, one for each database in which we searched. Since we
specified only one PubMed ID to search for, record contains only one item. This item is a dictionary
containing information about our search term, as well as all the related items that were found:

>>> record[0]["DbFrom"]

’pubmed’

>>> record[0]["IdList"]

[’19304878’]

The "LinkSetDb" key contains the search results, stored as a list consisting of one item for each target
database. In our search results, we only find hits in the PubMed database (although sub-divided into
categories):

>>> len(record[0]["LinkSetDb"])

8

The exact numbers should increase over time:

>>> for linksetdb in record[0]["LinkSetDb"]:

... print(linksetdb["DbTo"], linksetdb["LinkName"], len(linksetdb["Link"]))

...

pubmed pubmed_pubmed 162

pubmed pubmed_pubmed_alsoviewed 3

pubmed pubmed_pubmed_citedin 430

pubmed pubmed_pubmed_combined 6

pubmed pubmed_pubmed_five 6

pubmed pubmed_pubmed_refs 17

pubmed pubmed_pubmed_reviews 7

pubmed pubmed_pubmed_reviews_five 6
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The actual search results are stored as under the "Link" key.
Let’s now at the first search result:

>>> record[0]["LinkSetDb"][0]["Link"][0]

{’Id’: ’19304878’}

This is the article we searched for, which doesn’t help us much, so let’s look at the second search result:

>>> record[0]["LinkSetDb"][0]["Link"][1]

{’Id’: ’14630660’}

This paper, with PubMed ID 14630660, is about the Biopython PDB parser.
We can use a loop to print out all PubMed IDs:

>>> for link in record[0]["LinkSetDb"][0]["Link"]:

... print(link["Id"])

19304878

14630660

18689808

17121776

16377612

12368254

......

Now that was nice, but personally I am often more interested to find out if a paper has been cited. Well,
ELink can do that too – at least for journals in Pubmed Central (see Section 9.16.3).

For help on ELink, see the ELink help page. There is an entire sub-page just for the link names, describing
how different databases can be cross referenced.

9.8 EGQuery: Global Query - counts for search terms

EGQuery provides counts for a search term in each of the Entrez databases (i.e. a global query). This
is particularly useful to find out how many items your search terms would find in each database without
actually performing lots of separate searches with ESearch (see the example in 9.15.2 below).

In this example, we use Bio.Entrez.egquery() to obtain the counts for “Biopython”:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.egquery(term="biopython")

>>> record = Entrez.read(handle)

>>> for row in record["eGQueryResult"]:

... print(row["DbName"], row["Count"])

...

pubmed 6

pmc 62

journals 0

...

See the EGQuery help page for more information.
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9.9 ESpell: Obtaining spelling suggestions

ESpell retrieves spelling suggestions. In this example, we use Bio.Entrez.espell() to obtain the correct
spelling of Biopython:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.espell(term="biopythooon")

>>> record = Entrez.read(handle)

>>> record["Query"]

’biopythooon’

>>> record["CorrectedQuery"]

’biopython’

See the ESpell help page for more information. The main use of this is for GUI tools to provide automatic
suggestions for search terms.

9.10 Parsing huge Entrez XML files

The Entrez.read function reads the entire XML file returned by Entrez into a single Python object,
which is kept in memory. To parse Entrez XML files too large to fit in memory, you can use the func-
tion Entrez.parse. This is a generator function that reads records in the XML file one by one. This
function is only useful if the XML file reflects a Python list object (in other words, if Entrez.read on a
computer with infinite memory resources would return a Python list).

For example, you can download the entire Entrez Gene database for a given organism as a file from NCBI’s
ftp site. These files can be very large. As an example, on September 4, 2009, the file Homo_sapiens.ags.gz,
containing the Entrez Gene database for human, had a size of 116576 kB. This file, which is in the ASN

format, can be converted into an XML file using NCBI’s gene2xml program (see NCBI’s ftp site for more
information):

$ gene2xml -b T -i Homo_sapiens.ags -o Homo_sapiens.xml

The resulting XML file has a size of 6.1 GB. Attempting Entrez.read on this file will result in a
MemoryError on many computers.

The XML file Homo_sapiens.xml consists of a list of Entrez gene records, each corresponding to one
Entrez gene in human. Entrez.parse retrieves these gene records one by one. You can then print out or
store the relevant information in each record by iterating over the records. For example, this script iterates
over the Entrez gene records and prints out the gene numbers and names for all current genes:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = open("Homo_sapiens.xml")

>>> records = Entrez.parse(handle)

>>> for record in records:

... status = record["Entrezgene_track-info"]["Gene-track"]["Gene-track_status"]

... if status.attributes["value"]=="discontinued":

... continue

... geneid = record["Entrezgene_track-info"]["Gene-track"]["Gene-track_geneid"]

... genename = record["Entrezgene_gene"]["Gene-ref"]["Gene-ref_locus"]

... print(geneid, genename)

...

1 A1BG
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2 A2M

3 A2MP

8 AA

9 NAT1

10 NAT2

11 AACP

12 SERPINA3

13 AADAC

14 AAMP

15 AANAT

16 AARS

17 AAVS1

...

9.11 HTML escape characters

Pubmed records may contain HTML tags to indicate e.g. subscripts, superscripts, or italic text, as well as
mathematical symbols via MathML. By default, the Bio.Entrez parser treats all text as plain text without
markup; for example, the fragment “P < 0.05” in the abstract of a Pubmed record, which is encoded as

<i>P</i> &lt; 0.05

in the XML returned by Entrez, is converted to the Python string

’<i>P</i> < 0.05’

by the Bio.Entrez parser. While this is more human-readable, it is not valid HTML due to the less-than
sign, and makes further processing of the text e.g. by an HTML parser impractical. To ensure that all strings
returned by the parser are valid HTML, call Entrez.read or Entrez.parse with the escape argument set
to True:

>>> record = Entrez.read(handle, escape=True)

The parser will then replace all characters disallowed in HTML by their HTML-escaped equivalent; in the
example above, the parser will generate

’<i>P</i> &lt; 0.05’

which is a valid HTML fragment. By default, escape is False.

9.12 Handling errors

Three things can go wrong when parsing an XML file:

• The file may not be an XML file to begin with;

• The file may end prematurely or otherwise be corrupted;

• The file may be correct XML, but contain items that are not represented in the associated DTD.

The first case occurs if, for example, you try to parse a Fasta file as if it were an XML file:

>>> from Bio import Entrez

>>> handle = open("NC_005816.fna") # a Fasta file

>>> record = Entrez.read(handle)

Traceback (most recent call last):

...

Bio.Entrez.Parser.NotXMLError: Failed to parse the XML data (syntax error: line 1, column 0). Please make sure that the input data are in XML format.
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Here, the parser didn’t find the <?xml ... tag with which an XML file is supposed to start, and therefore
decides (correctly) that the file is not an XML file.

When your file is in the XML format but is corrupted (for example, by ending prematurely), the parser
will raise a CorruptedXMLError. Here is an example of an XML file that ends prematurely:

<?xml version="1.0"?>

<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">

<eInfoResult>

<DbList>

<DbName>pubmed</DbName>

<DbName>protein</DbName>

<DbName>nucleotide</DbName>

<DbName>nuccore</DbName>

<DbName>nucgss</DbName>

<DbName>nucest</DbName>

<DbName>structure</DbName>

<DbName>genome</DbName>

<DbName>books</DbName>

<DbName>cancerchromosomes</DbName>

<DbName>cdd</DbName>

which will generate the following traceback:

>>> Entrez.read(handle)

Traceback (most recent call last):

...

Bio.Entrez.Parser.CorruptedXMLError: Failed to parse the XML data (no element found: line 16, column 0). Please make sure that the input data are not corrupted.

Note that the error message tells you at what point in the XML file the error was detected.
The third type of error occurs if the XML file contains tags that do not have a description in the

corresponding DTD file. This is an example of such an XML file:

<?xml version="1.0"?>

<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">

<eInfoResult>

<DbInfo>

<DbName>pubmed</DbName>

<MenuName>PubMed</MenuName>

<Description>PubMed bibliographic record</Description>

<Count>20161961</Count>

<LastUpdate>2010/09/10 04:52</LastUpdate>

<FieldList>

<Field>

...

</Field>

</FieldList>

<DocsumList>

<Docsum>

<DsName>PubDate</DsName>

<DsType>4</DsType>

<DsTypeName>string</DsTypeName>

</Docsum>

<Docsum>
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<DsName>EPubDate</DsName>

...

</DbInfo>

</eInfoResult>

In this file, for some reason the tag <DocsumList> (and several others) are not listed in the DTD file
eInfo_020511.dtd, which is specified on the second line as the DTD for this XML file. By default, the
parser will stop and raise a ValidationError if it cannot find some tag in the DTD:

>>> from Bio import Entrez

>>> handle = open("einfo3.xml")

>>> record = Entrez.read(handle)

Traceback (most recent call last):

...

Bio.Entrez.Parser.ValidationError: Failed to find tag ’DocsumList’ in the DTD. To skip all tags that are not represented in the DTD, please call Bio.Entrez.read or Bio.Entrez.parse with validate=False.

Optionally, you can instruct the parser to skip such tags instead of raising a ValidationError. This is done
by calling Entrez.read or Entrez.parse with the argument validate equal to False:

>>> from Bio import Entrez

>>> handle = open("einfo3.xml")

>>> record = Entrez.read(handle, validate=False)

>>> handle.close()

Of course, the information contained in the XML tags that are not in the DTD are not present in the record
returned by Entrez.read.

9.13 Specialized parsers

The Bio.Entrez.read() function can parse most (if not all) XML output returned by Entrez. Entrez
typically allows you to retrieve records in other formats, which may have some advantages compared to the
XML format in terms of readability (or download size).

To request a specific file format from Entrez using Bio.Entrez.efetch() requires specifying the rettype
and/or retmode optional arguments. The different combinations are described for each database type on
the NCBI efetch webpage.

One obvious case is you may prefer to download sequences in the FASTA or GenBank/GenPept plain
text formats (which can then be parsed with Bio.SeqIO, see Sections 5.3.1 and 9.6). For the literature
databases, Biopython contains a parser for the MEDLINE format used in PubMed.

9.13.1 Parsing Medline records

You can find the Medline parser in Bio.Medline. Suppose we want to parse the file pubmed_result1.txt,
containing one Medline record. You can find this file in Biopython’s Tests\Medline directory. The file looks
like this:

PMID- 12230038

OWN - NLM

STAT- MEDLINE

DA - 20020916

DCOM- 20030606

LR - 20041117

PUBM- Print
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IS - 1467-5463 (Print)

VI - 3

IP - 3

DP - 2002 Sep

TI - The Bio* toolkits--a brief overview.

PG - 296-302

AB - Bioinformatics research is often difficult to do with commercial software. The

Open Source BioPerl, BioPython and Biojava projects provide toolkits with

...

We first open the file and then parse it:

>>> from Bio import Medline

>>> with open("pubmed_result1.txt") as handle:

... record = Medline.read(handle)

...

The record now contains the Medline record as a Python dictionary:

>>> record["PMID"]

’12230038’

>>> record["AB"]

’Bioinformatics research is often difficult to do with commercial software.

The Open Source BioPerl, BioPython and Biojava projects provide toolkits with

multiple functionality that make it easier to create customised pipelines or

analysis. This review briefly compares the quirks of the underlying languages

and the functionality, documentation, utility and relative advantages of the

Bio counterparts, particularly from the point of view of the beginning

biologist programmer.’

The key names used in a Medline record can be rather obscure; use

>>> help(record)

for a brief summary.
To parse a file containing multiple Medline records, you can use the parse function instead:

>>> from Bio import Medline

>>> with open("pubmed_result2.txt") as handle:

... for record in Medline.parse(handle):

... print(record["TI"])

...

A high level interface to SCOP and ASTRAL implemented in python.

GenomeDiagram: a python package for the visualization of large-scale genomic data.

Open source clustering software.

PDB file parser and structure class implemented in Python.

Instead of parsing Medline records stored in files, you can also parse Medline records downloaded by
Bio.Entrez.efetch. For example, let’s look at all Medline records in PubMed related to Biopython:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.esearch(db="pubmed", term="biopython")

>>> record = Entrez.read(handle)

>>> record["IdList"]

[’19304878’, ’18606172’, ’16403221’, ’16377612’, ’14871861’, ’14630660’, ’12230038’]
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We now use Bio.Entrez.efetch to download these Medline records:

>>> idlist = record["IdList"]

>>> handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text")

Here, we specify rettype="medline", retmode="text" to obtain the Medline records in plain-text Medline
format. Now we use Bio.Medline to parse these records:

>>> from Bio import Medline

>>> records = Medline.parse(handle)

>>> for record in records:

... print(record["AU"])

[’Cock PJ’, ’Antao T’, ’Chang JT’, ’Chapman BA’, ’Cox CJ’, ’Dalke A’, ..., ’de Hoon MJ’]

[’Munteanu CR’, ’Gonzalez-Diaz H’, ’Magalhaes AL’]

[’Casbon JA’, ’Crooks GE’, ’Saqi MA’]

[’Pritchard L’, ’White JA’, ’Birch PR’, ’Toth IK’]

[’de Hoon MJ’, ’Imoto S’, ’Nolan J’, ’Miyano S’]

[’Hamelryck T’, ’Manderick B’]

[’Mangalam H’]

For comparison, here we show an example using the XML format:

>>> handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="xml")

>>> records = Entrez.read(handle)

>>> for record in records["PubmedArticle"]:

... print(record["MedlineCitation"]["Article"]["ArticleTitle"])

Biopython: freely available Python tools for computational molecular biology and

bioinformatics.

Enzymes/non-enzymes classification model complexity based on composition, sequence,

3D and topological indices.

A high level interface to SCOP and ASTRAL implemented in python.

GenomeDiagram: a python package for the visualization of large-scale genomic data.

Open source clustering software.

PDB file parser and structure class implemented in Python.

The Bio* toolkits--a brief overview.

Note that in both of these examples, for simplicity we have naively combined ESearch and EFetch. In
this situation, the NCBI would expect you to use their history feature, as illustrated in Section 9.16.

9.13.2 Parsing GEO records

GEO (Gene Expression Omnibus) is a data repository of high-throughput gene expression and hybridization
array data. The Bio.Geo module can be used to parse GEO-formatted data.

The following code fragment shows how to parse the example GEO file GSE16.txt into a record and print
the record:

>>> from Bio import Geo

>>> handle = open("GSE16.txt")

>>> records = Geo.parse(handle)

>>> for record in records:

... print(record)

You can search the “gds” database (GEO datasets) with ESearch:
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>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.esearch(db="gds", term="GSE16")

>>> record = Entrez.read(handle)

>>> handle.close()

>>> record["Count"]

’27’

>>> record["IdList"]

[’200000016’, ’100000028’, ...]

From the Entrez website, UID “200000016” is GDS16 while the other hit “100000028” is for the associated
platform, GPL28. Unfortunately, at the time of writing the NCBI don’t seem to support downloading GEO
files using Entrez (not as XML, nor in the Simple Omnibus Format in Text (SOFT) format).

However, it is actually pretty straight forward to download the GEO files by FTP from ftp://ftp.

ncbi.nih.gov/pub/geo/ instead. In this case you might want ftp://ftp.ncbi.nih.gov/pub/geo/DATA/

SOFT/by_series/GSE16/GSE16_family.soft.gz (a compressed file, see the Python module gzip).

9.13.3 Parsing UniGene records

UniGene is an NCBI database of the transcriptome, with each UniGene record showing the set of transcripts
that are associated with a particular gene in a specific organism. A typical UniGene record looks like this:

ID Hs.2

TITLE N-acetyltransferase 2 (arylamine N-acetyltransferase)

GENE NAT2

CYTOBAND 8p22

GENE_ID 10

LOCUSLINK 10

HOMOL YES

EXPRESS bone| connective tissue| intestine| liver| liver tumor| normal| soft tissue/muscle tissue tumor| adult

RESTR_EXPR adult

CHROMOSOME 8

STS ACC=PMC310725P3 UNISTS=272646

STS ACC=WIAF-2120 UNISTS=44576

STS ACC=G59899 UNISTS=137181

...

STS ACC=GDB:187676 UNISTS=155563

PROTSIM ORG=10090; PROTGI=6754794; PROTID=NP_035004.1; PCT=76.55; ALN=288

PROTSIM ORG=9796; PROTGI=149742490; PROTID=XP_001487907.1; PCT=79.66; ALN=288

PROTSIM ORG=9986; PROTGI=126722851; PROTID=NP_001075655.1; PCT=76.90; ALN=288

...

PROTSIM ORG=9598; PROTGI=114619004; PROTID=XP_519631.2; PCT=98.28; ALN=288

SCOUNT 38

SEQUENCE ACC=BC067218.1; NID=g45501306; PID=g45501307; SEQTYPE=mRNA

SEQUENCE ACC=NM_000015.2; NID=g116295259; PID=g116295260; SEQTYPE=mRNA

SEQUENCE ACC=D90042.1; NID=g219415; PID=g219416; SEQTYPE=mRNA

SEQUENCE ACC=D90040.1; NID=g219411; PID=g219412; SEQTYPE=mRNA

SEQUENCE ACC=BC015878.1; NID=g16198419; PID=g16198420; SEQTYPE=mRNA

SEQUENCE ACC=CR407631.1; NID=g47115198; PID=g47115199; SEQTYPE=mRNA

SEQUENCE ACC=BG569293.1; NID=g13576946; CLONE=IMAGE:4722596; END=5’; LID=6989; SEQTYPE=EST; TRACE=44157214
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...

SEQUENCE ACC=AU099534.1; NID=g13550663; CLONE=HSI08034; END=5’; LID=8800; SEQTYPE=EST

//

This particular record shows the set of transcripts (shown in the SEQUENCE lines) that originate from
the human gene NAT2, encoding en N-acetyltransferase. The PROTSIM lines show proteins with significant
similarity to NAT2, whereas the STS lines show the corresponding sequence-tagged sites in the genome.

To parse UniGene files, use the Bio.UniGene module:

>>> from Bio import UniGene

>>> input = open("myunigenefile.data")

>>> record = UniGene.read(input)

The record returned by UniGene.read is a Python object with attributes corresponding to the fields in
the UniGene record. For example,

>>> record.ID

"Hs.2"

>>> record.title

"N-acetyltransferase 2 (arylamine N-acetyltransferase)"

The EXPRESS and RESTR_EXPR lines are stored as Python lists of strings:

[

"bone",

"connective tissue",

"intestine",

"liver",

"liver tumor",

"normal",

"soft tissue/muscle tissue tumor",

"adult",

]

Specialized objects are returned for the STS, PROTSIM, and SEQUENCE lines, storing the keys shown in
each line as attributes:

>>> record.sts[0].acc

’PMC310725P3’

>>> record.sts[0].unists

’272646’

and similarly for the PROTSIM and SEQUENCE lines.
To parse a file containing more than one UniGene record, use the parse function in Bio.UniGene:

>>> from Bio import UniGene

>>> input = open("unigenerecords.data")

>>> records = UniGene.parse(input)

>>> for record in records:

... print(record.ID)

9.14 Using a proxy

Normally you won’t have to worry about using a proxy, but if this is an issue on your network here is
how to deal with it. Internally, Bio.Entrez uses the standard Python library urllib for accessing the
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NCBI servers. This will check an environment variable called http_proxy to configure any simple proxy
automatically. Unfortunately this module does not support the use of proxies which require authentication.

You may choose to set the http_proxy environment variable once (how you do this will depend on your
operating system). Alternatively you can set this within Python at the start of your script, for example:

import os

os.environ["http_proxy"] = "http://proxyhost.example.com:8080"

See the urllib documentation for more details.

9.15 Examples

9.15.1 PubMed and Medline

If you are in the medical field or interested in human issues (and many times even if you are not!), PubMed
(https://www.ncbi.nlm.nih.gov/PubMed/) is an excellent source of all kinds of goodies. So like other
things, we’d like to be able to grab information from it and use it in Python scripts.

In this example, we will query PubMed for all articles having to do with orchids (see section 2.3 for our
motivation). We first check how many of such articles there are:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.egquery(term="orchid")

>>> record = Entrez.read(handle)

>>> for row in record["eGQueryResult"]:

... if row["DbName"]=="pubmed":

... print(row["Count"])

463

Now we use the Bio.Entrez.efetch function to download the PubMed IDs of these 463 articles:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.esearch(db="pubmed", term="orchid", retmax=463)

>>> record = Entrez.read(handle)

>>> handle.close()

>>> idlist = record["IdList"]

This returns a Python list containing all of the PubMed IDs of articles related to orchids:

>>> print(idlist)

[’18680603’, ’18665331’, ’18661158’, ’18627489’, ’18627452’, ’18612381’,

’18594007’, ’18591784’, ’18589523’, ’18579475’, ’18575811’, ’18575690’,

...

Now that we’ve got them, we obviously want to get the corresponding Medline records and extract the
information from them. Here, we’ll download the Medline records in the Medline flat-file format, and use
the Bio.Medline module to parse them:

>>> from Bio import Medline

>>> handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline",

... retmode="text")

>>> records = Medline.parse(handle)
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NOTE - We’ve just done a separate search and fetch here, the NCBI much prefer you to take advantage
of their history support in this situation. See Section 9.16.

Keep in mind that records is an iterator, so you can iterate through the records only once. If you want
to save the records, you can convert them to a list:

>>> records = list(records)

Let’s now iterate over the records to print out some information about each record:

>>> for record in records:

... print("title:", record.get("TI", "?"))

... print("authors:", record.get("AU", "?"))

... print("source:", record.get("SO", "?"))

... print("")

...

The output for this looks like:

title: Sex pheromone mimicry in the early spider orchid (ophrys sphegodes):

patterns of hydrocarbons as the key mechanism for pollination by sexual

deception [In Process Citation]

authors: [’Schiestl FP’, ’Ayasse M’, ’Paulus HF’, ’Lofstedt C’, ’Hansson BS’,

’Ibarra F’, ’Francke W’]

source: J Comp Physiol [A] 2000 Jun;186(6):567-74

Especially interesting to note is the list of authors, which is returned as a standard Python list. This
makes it easy to manipulate and search using standard Python tools. For instance, we could loop through
a whole bunch of entries searching for a particular author with code like the following:

>>> search_author = "Waits T"

>>> for record in records:

... if not "AU" in record:

... continue

... if search_author in record["AU"]:

... print("Author %s found: %s" % (search_author, record["SO"]))

...

Hopefully this section gave you an idea of the power and flexibility of the Entrez and Medline interfaces
and how they can be used together.

9.15.2 Searching, downloading, and parsing Entrez Nucleotide records

Here we’ll show a simple example of performing a remote Entrez query. In section 2.3 of the parsing
examples, we talked about using NCBI’s Entrez website to search the NCBI nucleotide databases for info
on Cypripedioideae, our friends the lady slipper orchids. Now, we’ll look at how to automate that process
using a Python script. In this example, we’ll just show how to connect, get the results, and parse them, with
the Entrez module doing all of the work.

First, we use EGQuery to find out the number of results we will get before actually downloading them.
EGQuery will tell us how many search results were found in each of the databases, but for this example we
are only interested in nucleotides:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.egquery(term="Cypripedioideae")

>>> record = Entrez.read(handle)
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>>> for row in record["eGQueryResult"]:

... if row["DbName"]=="nuccore":

... print(row["Count"])

4457

So, we expect to find 4457 Entrez Nucleotide records (this increased from 814 records in 2008; it is likely
to continue to increase in the future). If you find some ridiculously high number of hits, you may want to
reconsider if you really want to download all of them, which is our next step. Let’s use the retmax argument
to restrict the maximum number of records retrieved to the number available in 2008:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.esearch(db="nucleotide", term="Cypripedioideae", retmax=814, idtype="acc")

>>> record = Entrez.read(handle)

>>> handle.close()

Here, record is a Python dictionary containing the search results and some auxiliary information. Just
for information, let’s look at what is stored in this dictionary:

>>> print(record.keys())

[’Count’, ’RetMax’, ’IdList’, ’TranslationSet’, ’RetStart’, ’QueryTranslation’]

First, let’s check how many results were found:

>>> print(record["Count"])

’4457’

You might have expected this to be 814, the maximum number of records we asked to retrieve. However,
Count represents the total number of records available for that search, not how many were retrieved. The
retrieved records are stored in record[’IdList’], which should contain the total number we asked for:

>>> len(record["IdList"])

814

Let’s look at the first five results:

>>> record["IdList"][:5]

[’KX265015.1’, ’KX265014.1’, ’KX265013.1’, ’KX265012.1’, ’KX265011.1’]

We can download these records using efetch. While you could download these records one by one, to
reduce the load on NCBI’s servers, it is better to fetch a bunch of records at the same time, shown below.
However, in this situation you should ideally be using the history feature described later in Section 9.16.

>>> idlist = ",".join(record["IdList"][:5])

>>> print(idlist)

KX265015.1, KX265014.1, KX265013.1, KX265012.1, KX265011.1]

>>> handle = Entrez.efetch(db="nucleotide", id=idlist, retmode="xml")

>>> records = Entrez.read(handle)

>>> len(records)

5

Each of these records corresponds to one GenBank record.

>>> print(records[0].keys())

[’GBSeq_moltype’, ’GBSeq_source’, ’GBSeq_sequence’,

’GBSeq_primary-accession’, ’GBSeq_definition’, ’GBSeq_accession-version’,
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’GBSeq_topology’, ’GBSeq_length’, ’GBSeq_feature-table’,

’GBSeq_create-date’, ’GBSeq_other-seqids’, ’GBSeq_division’,

’GBSeq_taxonomy’, ’GBSeq_references’, ’GBSeq_update-date’,

’GBSeq_organism’, ’GBSeq_locus’, ’GBSeq_strandedness’]

>>> print(records[0]["GBSeq_primary-accession"])

DQ110336

>>> print(records[0]["GBSeq_other-seqids"])

[’gb|DQ110336.1|’, ’gi|187237168’]

>>> print(records[0]["GBSeq_definition"])

Cypripedium calceolus voucher Davis 03-03 A maturase (matR) gene, partial cds;

mitochondrial

>>> print(records[0]["GBSeq_organism"])

Cypripedium calceolus

You could use this to quickly set up searches – but for heavy usage, see Section 9.16.

9.15.3 Searching, downloading, and parsing GenBank records

The GenBank record format is a very popular method of holding information about sequences, sequence
features, and other associated sequence information. The format is a good way to get information from the
NCBI databases at https://www.ncbi.nlm.nih.gov/.

In this example we’ll show how to query the NCBI databases,to retrieve the records from the query, and
then parse them using Bio.SeqIO - something touched on in Section 5.3.1. For simplicity, this example does
not take advantage of the WebEnv history feature – see Section 9.16 for this.

First, we want to make a query and find out the ids of the records to retrieve. Here we’ll do a quick
search for one of our favorite organisms, Opuntia (prickly-pear cacti). We can do quick search and get back
the GIs (GenBank identifiers) for all of the corresponding records. First we check how many records there
are:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.egquery(term="Opuntia AND rpl16")

>>> record = Entrez.read(handle)

>>> for row in record["eGQueryResult"]:

... if row["DbName"]=="nuccore":

... print(row["Count"])

...

9

Now we download the list of GenBank identifiers:

>>> handle = Entrez.esearch(db="nuccore", term="Opuntia AND rpl16")

>>> record = Entrez.read(handle)

>>> gi_list = record["IdList"]

>>> gi_list

[’57240072’, ’57240071’, ’6273287’, ’6273291’, ’6273290’, ’6273289’, ’6273286’,

’6273285’, ’6273284’]

Now we use these GIs to download the GenBank records - note that with older versions of Biopython
you had to supply a comma separated list of GI numbers to Entrez, as of Biopython 1.59 you can pass a list
and this is converted for you:
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>>> gi_str = ",".join(gi_list)

>>> handle = Entrez.efetch(db="nuccore", id=gi_str, rettype="gb", retmode="text")

If you want to look at the raw GenBank files, you can read from this handle and print out the result:

>>> text = handle.read()

>>> print(text)

LOCUS AY851612 892 bp DNA linear PLN 10-APR-2007

DEFINITION Opuntia subulata rpl16 gene, intron; chloroplast.

ACCESSION AY851612

VERSION AY851612.1 GI:57240072

KEYWORDS .

SOURCE chloroplast Austrocylindropuntia subulata

ORGANISM Austrocylindropuntia subulata

Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;

Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons;

Caryophyllales; Cactaceae; Opuntioideae; Austrocylindropuntia.

REFERENCE 1 (bases 1 to 892)

AUTHORS Butterworth,C.A. and Wallace,R.S.

...

In this case, we are just getting the raw records. To get the records in a more Python-friendly form, we
can use Bio.SeqIO to parse the GenBank data into SeqRecord objects, including SeqFeature objects (see
Chapter 5):

>>> from Bio import SeqIO

>>> handle = Entrez.efetch(db="nuccore", id=gi_str, rettype="gb", retmode="text")

>>> records = SeqIO.parse(handle, "gb")

We can now step through the records and look at the information we are interested in:

>>> for record in records:

>>> ... print("%s, length %i, with %i features"

>>> ... % (record.name, len(record), len(record.features)))

AY851612, length 892, with 3 features

AY851611, length 881, with 3 features

AF191661, length 895, with 3 features

AF191665, length 902, with 3 features

AF191664, length 899, with 3 features

AF191663, length 899, with 3 features

AF191660, length 893, with 3 features

AF191659, length 894, with 3 features

AF191658, length 896, with 3 features

Using these automated query retrieval functionality is a big plus over doing things by hand. Although the
module should obey the NCBI’s max three queries per second rule, the NCBI have other recommendations
like avoiding peak hours. See Section 9.1. In particular, please note that for simplicity, this example does
not use the WebEnv history feature. You should use this for any non-trivial search and download work, see
Section 9.16.

Finally, if plan to repeat your analysis, rather than downloading the files from the NCBI and parsing
them immediately (as shown in this example), you should just download the records once and save them to
your hard disk, and then parse the local file.
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9.15.4 Finding the lineage of an organism

Staying with a plant example, let’s now find the lineage of the Cypripedioideae orchid family. First, we
search the Taxonomy database for Cypripedioideae, which yields exactly one NCBI taxonomy identifier:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> handle = Entrez.esearch(db="Taxonomy", term="Cypripedioideae")

>>> record = Entrez.read(handle)

>>> record["IdList"]

[’158330’]

>>> record["IdList"][0]

’158330’

Now, we use efetch to download this entry in the Taxonomy database, and then parse it:

>>> handle = Entrez.efetch(db="Taxonomy", id="158330", retmode="xml")

>>> records = Entrez.read(handle)

Again, this record stores lots of information:

>>> records[0].keys()

[’Lineage’, ’Division’, ’ParentTaxId’, ’PubDate’, ’LineageEx’,

’CreateDate’, ’TaxId’, ’Rank’, ’GeneticCode’, ’ScientificName’,

’MitoGeneticCode’, ’UpdateDate’]

We can get the lineage directly from this record:

>>> records[0]["Lineage"]

’cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina;

Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta;

Liliopsida; Asparagales; Orchidaceae’

The record data contains much more than just the information shown here - for example look under
"LineageEx" instead of "Lineage" and you’ll get the NCBI taxon identifiers of the lineage entries too.

9.16 Using the history and WebEnv

Often you will want to make a series of linked queries. Most typically, running a search, perhaps refining the
search, and then retrieving detailed search results. You can do this by making a series of separate calls to
Entrez. However, the NCBI prefer you to take advantage of their history support - for example combining
ESearch and EFetch.

Another typical use of the history support would be to combine EPost and EFetch. You use EPost to
upload a list of identifiers, which starts a new history session. You then download the records with EFetch
by referring to the session (instead of the identifiers).

9.16.1 Searching for and downloading sequences using the history

Suppose we want to search and download all the Opuntia rpl16 nucleotide sequences, and store them in a
FASTA file. As shown in Section 9.15.3, we can naively combine Bio.Entrez.esearch() to get a list of
Accession numbers, and then call Bio.Entrez.efetch() to download them all.

However, the approved approach is to run the search with the history feature. Then, we can fetch the
results by reference to the search results - which the NCBI can anticipate and cache.

To do this, call Bio.Entrez.esearch() as normal, but with the additional argument of usehistory="y",
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>>> from Bio import Entrez

>>> Entrez.email = "history.user@example.com" # Always tell NCBI who you are

>>> search_handle = Entrez.esearch(db="nucleotide",term="Opuntia[orgn] and rpl16",

... usehistory="y", idtype="acc")

>>> search_results = Entrez.read(search_handle)

>>> search_handle.close()

When you get the XML output back, it will still include the usual search results.

>>> acc_list = search_results["IdList"]

>>> count = int(search_results["Count"])

>>> count == len(acc_list)

True

(Remember from Section 9.15.2 that the number of records retrieved will not necessarily be the same as the
Count, especially if the argument retmax is used.)
However, you also get given two additional pieces of information, the WebEnv session cookie, and the
QueryKey:

>>> webenv = search_results["WebEnv"]

>>> query_key = search_results["QueryKey"]

Having stored these values in variables session cookie and query key we can use them as parameters
to Bio.Entrez.efetch() instead of giving the GI numbers as identifiers.

While for small searches you might be OK downloading everything at once, it is better to download in
batches. You use the retstart and retmax parameters to specify which range of search results you want
returned (starting entry using zero-based counting, and maximum number of results to return). Note that
if Biopython encounters a transient failure like a HTTP 500 response when communicating with NCBI, it
will automatically try again a couple of times. For example,

# This assumes you have already run a search as shown above,

# and set the variables count, webenv, query_key

batch_size = 3

out_handle = open("orchid_rpl16.fasta", "w")

for start in range(0, count, batch_size):

end = min(count, start + batch_size)

print("Going to download record %i to %i" % (start + 1, end))

fetch_handle = Entrez.efetch(

db="nucleotide",

rettype="fasta",

retmode="text",

retstart=start,

retmax=batch_size,

webenv=webenv,

query_key=query_key,

idtype="acc",

)

data = fetch_handle.read()

fetch_handle.close()

out_handle.write(data)

out_handle.close()

For illustrative purposes, this example downloaded the FASTA records in batches of three. Unless you are
downloading genomes or chromosomes, you would normally pick a larger batch size.
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9.16.2 Searching for and downloading abstracts using the history

Here is another history example, searching for papers published in the last year about the Opuntia, and then
downloading them into a file in MedLine format:

from Bio import Entrez

Entrez.email = "history.user@example.com"

search_results = Entrez.read(

Entrez.esearch(

db="pubmed", term="Opuntia[ORGN]", reldate=365, datetype="pdat", usehistory="y"

)

)

count = int(search_results["Count"])

print("Found %i results" % count)

batch_size = 10

out_handle = open("recent_orchid_papers.txt", "w")

for start in range(0, count, batch_size):

end = min(count, start + batch_size)

print("Going to download record %i to %i" % (start + 1, end))

fetch_handle = Entrez.efetch(

db="pubmed",

rettype="medline",

retmode="text",

retstart=start,

retmax=batch_size,

webenv=search_results["WebEnv"],

query_key=search_results["QueryKey"],

)

data = fetch_handle.read()

fetch_handle.close()

out_handle.write(data)

out_handle.close()

At the time of writing, this gave 28 matches - but because this is a date dependent search, this will of course
vary. As described in Section 9.13.1 above, you can then use Bio.Medline to parse the saved records.

9.16.3 Searching for citations

Back in Section 9.7 we mentioned ELink can be used to search for citations of a given paper. Unfortunately
this only covers journals indexed for PubMed Central (doing it for all the journals in PubMed would mean
a lot more work for the NIH). Let’s try this for the Biopython PDB parser paper, PubMed ID 14630660:

>>> from Bio import Entrez

>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

>>> pmid = "14630660"

>>> results = Entrez.read(Entrez.elink(dbfrom="pubmed", db="pmc",

... LinkName="pubmed_pmc_refs", id=pmid))

>>> pmc_ids = [link["Id"] for link in results[0]["LinkSetDb"][0]["Link"]]

>>> pmc_ids

[’2744707’, ’2705363’, ’2682512’, ..., ’1190160’]
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Great - eleven articles. But why hasn’t the Biopython application note been found (PubMed ID
19304878)? Well, as you might have guessed from the variable names, there are not actually PubMed
IDs, but PubMed Central IDs. Our application note is the third citing paper in that list, PMCID 2682512.

So, what if (like me) you’d rather get back a list of PubMed IDs? Well we can call ELink again to
translate them. This becomes a two step process, so by now you should expect to use the history feature to
accomplish it (Section 9.16).

But first, taking the more straightforward approach of making a second (separate) call to ELink:

>>> results2 = Entrez.read(Entrez.elink(dbfrom="pmc", db="pubmed", LinkName="pmc_pubmed",

... id=",".join(pmc_ids)))

>>> pubmed_ids = [link["Id"] for link in results2[0]["LinkSetDb"][0]["Link"]]

>>> pubmed_ids

[’19698094’, ’19450287’, ’19304878’, ..., ’15985178’]

This time you can immediately spot the Biopython application note as the third hit (PubMed ID 19304878).
Now, let’s do that all again but with the history . . . TODO.
And finally, don’t forget to include your own email address in the Entrez calls.
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Chapter 10

Swiss-Prot and ExPASy

10.1 Parsing Swiss-Prot files

Swiss-Prot (https://web.expasy.org/docs/swiss-prot_guideline.html) is a hand-curated database of
protein sequences. Biopython can parse the “plain text” Swiss-Prot file format, which is still used for the
UniProt Knowledgebase which combined Swiss-Prot, TrEMBL and PIR-PSD.

Although in the following we focus on the older human readable plain text format, Bio.SeqIO can read
both this and the newer UniProt XML file format for annotated protein sequences.

10.1.1 Parsing Swiss-Prot records

In Section 5.3.2, we described how to extract the sequence of a Swiss-Prot record as a SeqRecord object.
Alternatively, you can store the Swiss-Prot record in a Bio.SwissProt.Record object, which in fact stores
the complete information contained in the Swiss-Prot record. In this section, we describe how to extract
Bio.SwissProt.Record objects from a Swiss-Prot file.

To parse a Swiss-Prot record, we first get a handle to a Swiss-Prot record. There are several ways to do
so, depending on where and how the Swiss-Prot record is stored:

• Open a Swiss-Prot file locally:

>>> handle = open("myswissprotfile.dat")

• Open a gzipped Swiss-Prot file:

>>> import gzip

>>> handle = gzip.open("myswissprotfile.dat.gz", "rt")

• Open a Swiss-Prot file over the internet:

>>> from urllib.request import urlopen # Python 3 only

>>> from io import TextIOWrapper

>>> handle = TextIOWrapper(urlopen("https://raw.githubusercontent.com/biopython/biopython/master/Tests/SwissProt/F2CXE6.txt"))

to open the file stored on the Internet before calling read.

Note for Python 2 this can be done by using:

>>> from urllib import urlopen #Python 2 only

>>> handle = urlopen("https://raw.githubusercontent.com/biopython/biopython/master/Tests/SwissProt/F2CXE6.txt")

• Open a Swiss-Prot file over the internet from the ExPASy database (see section 10.5.1):
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>>> from Bio import ExPASy

>>> handle = ExPASy.get_sprot_raw(myaccessionnumber)

The key point is that for the parser, it doesn’t matter how the handle was created, as long as it points to
data in the Swiss-Prot format.

We can use Bio.SeqIO as described in Section 5.3.2 to get file format agnostic SeqRecord objects.
Alternatively, we can use Bio.SwissProt get Bio.SwissProt.Record objects, which are a much closer
match to the underlying file format.

To read one Swiss-Prot record from the handle, we use the function read():

>>> from Bio import SwissProt

>>> record = SwissProt.read(handle)

This function should be used if the handle points to exactly one Swiss-Prot record. It raises a ValueError

if no Swiss-Prot record was found, and also if more than one record was found.
We can now print out some information about this record:

>>> print(record.description)

SubName: Full=Plasma membrane intrinsic protein {ECO:0000313|EMBL:BAN04711.1}; SubName: Full=Predicted protein {ECO:0000313|EMBL:BAJ87517.1};

>>> for ref in record.references:

... print("authors:", ref.authors)

... print("title:", ref.title)

... print(record.organism_classification)

...

authors: Matsumoto T., Tanaka T., Sakai H., Amano N., Kanamori H., Kurita K., Kikuta A., Kamiya K., Yamamoto M., Ikawa H., Fujii N., Hori K., Itoh T., Sato K.

title: Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries.

[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ’Embryophyta’, ’Tracheophyta’, ’Spermatophyta’, ’Magnoliophyta’, ’Liliopsida’, ’Poales’, ’Poaceae’, ’BEP clade’, ’Pooideae’, ’Triticeae’, ’Hordeum’]

authors: Shibasaka M., Sasano S., Utsugi S., Katsuhara M.

title: Functional characterization of a novel plasma membrane intrinsic protein2 in barley.

[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ’Embryophyta’, ’Tracheophyta’, ’Spermatophyta’, ’Magnoliophyta’, ’Liliopsida’, ’Poales’, ’Poaceae’, ’BEP clade’, ’Pooideae’, ’Triticeae’, ’Hordeum’]

authors: Shibasaka M., Katsuhara M., Sasano S.

title:

[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ’Embryophyta’, ’Tracheophyta’, ’Spermatophyta’, ’Magnoliophyta’, ’Liliopsida’, ’Poales’, ’Poaceae’, ’BEP clade’, ’Pooideae’, ’Triticeae’, ’Hordeum’]

To parse a file that contains more than one Swiss-Prot record, we use the parse function instead. This
function allows us to iterate over the records in the file.

For example, let’s parse the full Swiss-Prot database and collect all the descriptions. You can download
this from the ExPAYs FTP site as a single gzipped-file uniprot_sprot.dat.gz (about 300MB). This is a
compressed file containing a single file, uniprot_sprot.dat (over 1.5GB).

As described at the start of this section, you can use the Python library gzip to open and uncompress
a .gz file, like this:

>>> import gzip

>>> handle = gzip.open("uniprot_sprot.dat.gz", "rt")

However, uncompressing a large file takes time, and each time you open the file for reading in this way,
it has to be decompressed on the fly. So, if you can spare the disk space you’ll save time in the long run if
you first decompress the file to disk, to get the uniprot_sprot.dat file inside. Then you can open the file
for reading as usual:

>>> handle = open("uniprot_sprot.dat")

As of June 2009, the full Swiss-Prot database downloaded from ExPASy contained 468851 Swiss-Prot
records. One concise way to build up a list of the record descriptions is with a list comprehension:

174

ftp://ftp.expasy.org/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz


>>> from Bio import SwissProt

>>> handle = open("uniprot_sprot.dat")

>>> descriptions = [record.description for record in SwissProt.parse(handle)]

>>> len(descriptions)

468851

>>> descriptions[:5]

[’RecName: Full=Protein MGF 100-1R;’,

’RecName: Full=Protein MGF 100-1R;’,

’RecName: Full=Protein MGF 100-1R;’,

’RecName: Full=Protein MGF 100-1R;’,

’RecName: Full=Protein MGF 100-2L;’]

Or, using a for loop over the record iterator:

>>> from Bio import SwissProt

>>> descriptions = []

>>> handle = open("uniprot_sprot.dat")

>>> for record in SwissProt.parse(handle):

... descriptions.append(record.description)

...

>>> len(descriptions)

468851

Because this is such a large input file, either way takes about eleven minutes on my new desktop computer
(using the uncompressed uniprot_sprot.dat file as input).

It is equally easy to extract any kind of information you’d like from Swiss-Prot records. To see the
members of a Swiss-Prot record, use

>>> dir(record)

[’__doc__’, ’__init__’, ’__module__’, ’accessions’, ’annotation_update’,

’comments’, ’created’, ’cross_references’, ’data_class’, ’description’,

’entry_name’, ’features’, ’gene_name’, ’host_organism’, ’keywords’,

’molecule_type’, ’organelle’, ’organism’, ’organism_classification’,

’references’, ’seqinfo’, ’sequence’, ’sequence_length’,

’sequence_update’, ’taxonomy_id’]

10.1.2 Parsing the Swiss-Prot keyword and category list

Swiss-Prot also distributes a file keywlist.txt, which lists the keywords and categories used in Swiss-Prot.
The file contains entries in the following form:

ID 2Fe-2S.

AC KW-0001

DE Protein which contains at least one 2Fe-2S iron-sulfur cluster: 2 iron

DE atoms complexed to 2 inorganic sulfides and 4 sulfur atoms of

DE cysteines from the protein.

SY Fe2S2; [2Fe-2S] cluster; [Fe2S2] cluster; Fe2/S2 (inorganic) cluster;

SY Di-mu-sulfido-diiron; 2 iron, 2 sulfur cluster binding.

GO GO:0051537; 2 iron, 2 sulfur cluster binding

HI Ligand: Iron; Iron-sulfur; 2Fe-2S.

HI Ligand: Metal-binding; 2Fe-2S.

CA Ligand.

//
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ID 3D-structure.

AC KW-0002

DE Protein, or part of a protein, whose three-dimensional structure has

DE been resolved experimentally (for example by X-ray crystallography or

DE NMR spectroscopy) and whose coordinates are available in the PDB

DE database. Can also be used for theoretical models.

HI Technical term: 3D-structure.

CA Technical term.

//

ID 3Fe-4S.

...

The entries in this file can be parsed by the parse function in the Bio.SwissProt.KeyWList module.
Each entry is then stored as a Bio.SwissProt.KeyWList.Record, which is a Python dictionary.

>>> from Bio.SwissProt import KeyWList

>>> handle = open("keywlist.txt")

>>> records = KeyWList.parse(handle)

>>> for record in records:

... print(record["ID"])

... print(record["DE"])

This prints

2Fe-2S.

Protein which contains at least one 2Fe-2S iron-sulfur cluster: 2 iron atoms

complexed to 2 inorganic sulfides and 4 sulfur atoms of cysteines from the

protein.

...

10.2 Parsing Prosite records

Prosite is a database containing protein domains, protein families, functional sites, as well as the patterns
and profiles to recognize them. Prosite was developed in parallel with Swiss-Prot. In Biopython, a Prosite
record is represented by the Bio.ExPASy.Prosite.Record class, whose members correspond to the different
fields in a Prosite record.

In general, a Prosite file can contain more than one Prosite records. For example, the full set of Prosite
records, which can be downloaded as a single file (prosite.dat) from the ExPASy FTP site, contains 2073
records (version 20.24 released on 4 December 2007). To parse such a file, we again make use of an iterator:

>>> from Bio.ExPASy import Prosite

>>> handle = open("myprositefile.dat")

>>> records = Prosite.parse(handle)

We can now take the records one at a time and print out some information. For example, using the file
containing the complete Prosite database, we’d find

>>> from Bio.ExPASy import Prosite

>>> handle = open("prosite.dat")

>>> records = Prosite.parse(handle)

>>> record = next(records)

>>> record.accession

’PS00001’
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>>> record.name

’ASN_GLYCOSYLATION’

>>> record.pdoc

’PDOC00001’

>>> record = next(records)

>>> record.accession

’PS00004’

>>> record.name

’CAMP_PHOSPHO_SITE’

>>> record.pdoc

’PDOC00004’

>>> record = next(records)

>>> record.accession

’PS00005’

>>> record.name

’PKC_PHOSPHO_SITE’

>>> record.pdoc

’PDOC00005’

and so on. If you’re interested in how many Prosite records there are, you could use

>>> from Bio.ExPASy import Prosite

>>> handle = open("prosite.dat")

>>> records = Prosite.parse(handle)

>>> n = 0

>>> for record in records: n+=1

...

>>> n

2073

To read exactly one Prosite from the handle, you can use the read function:

>>> from Bio.ExPASy import Prosite

>>> handle = open("mysingleprositerecord.dat")

>>> record = Prosite.read(handle)

This function raises a ValueError if no Prosite record is found, and also if more than one Prosite record is
found.

10.3 Parsing Prosite documentation records

In the Prosite example above, the record.pdoc accession numbers ’PDOC00001’, ’PDOC00004’, ’PDOC00005’
and so on refer to Prosite documentation. The Prosite documentation records are available from ExPASy
as individual files, and as one file (prosite.doc) containing all Prosite documentation records.

We use the parser in Bio.ExPASy.Prodoc to parse Prosite documentation records. For example, to create
a list of all accession numbers of Prosite documentation record, you can use

>>> from Bio.ExPASy import Prodoc

>>> handle = open("prosite.doc")

>>> records = Prodoc.parse(handle)

>>> accessions = [record.accession for record in records]

Again a read() function is provided to read exactly one Prosite documentation record from the handle.
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10.4 Parsing Enzyme records

ExPASy’s Enzyme database is a repository of information on enzyme nomenclature. A typical Enzyme
record looks as follows:

ID 3.1.1.34

DE Lipoprotein lipase.

AN Clearing factor lipase.

AN Diacylglycerol lipase.

AN Diglyceride lipase.

CA Triacylglycerol + H(2)O = diacylglycerol + a carboxylate.

CC -!- Hydrolyzes triacylglycerols in chylomicrons and very low-density

CC lipoproteins (VLDL).

CC -!- Also hydrolyzes diacylglycerol.

PR PROSITE; PDOC00110;

DR P11151, LIPL_BOVIN ; P11153, LIPL_CAVPO ; P11602, LIPL_CHICK ;

DR P55031, LIPL_FELCA ; P06858, LIPL_HUMAN ; P11152, LIPL_MOUSE ;

DR O46647, LIPL_MUSVI ; P49060, LIPL_PAPAN ; P49923, LIPL_PIG ;

DR Q06000, LIPL_RAT ; Q29524, LIPL_SHEEP ;

//

In this example, the first line shows the EC (Enzyme Commission) number of lipoprotein lipase (sec-
ond line). Alternative names of lipoprotein lipase are ”clearing factor lipase”, ”diacylglycerol lipase”, and
”diglyceride lipase” (lines 3 through 5). The line starting with ”CA” shows the catalytic activity of this
enzyme. Comment lines start with ”CC”. The ”PR” line shows references to the Prosite Documentation
records, and the ”DR” lines show references to Swiss-Prot records. Not of these entries are necessarily
present in an Enzyme record.

In Biopython, an Enzyme record is represented by the Bio.ExPASy.Enzyme.Record class. This record
derives from a Python dictionary and has keys corresponding to the two-letter codes used in Enzyme files.
To read an Enzyme file containing one Enzyme record, use the read function in Bio.ExPASy.Enzyme:

>>> from Bio.ExPASy import Enzyme

>>> with open("lipoprotein.txt") as handle:

... record = Enzyme.read(handle)

...

>>> record["ID"]

’3.1.1.34’

>>> record["DE"]

’Lipoprotein lipase.’

>>> record["AN"]

[’Clearing factor lipase.’, ’Diacylglycerol lipase.’, ’Diglyceride lipase.’]

>>> record["CA"]

’Triacylglycerol + H(2)O = diacylglycerol + a carboxylate.’

>>> record["PR"]

[’PDOC00110’]

>>> record["CC"]

[’Hydrolyzes triacylglycerols in chylomicrons and very low-density lipoproteins

(VLDL).’, ’Also hydrolyzes diacylglycerol.’]

>>> record["DR"]

[[’P11151’, ’LIPL_BOVIN’], [’P11153’, ’LIPL_CAVPO’], [’P11602’, ’LIPL_CHICK’],

[’P55031’, ’LIPL_FELCA’], [’P06858’, ’LIPL_HUMAN’], [’P11152’, ’LIPL_MOUSE’],

[’O46647’, ’LIPL_MUSVI’], [’P49060’, ’LIPL_PAPAN’], [’P49923’, ’LIPL_PIG’],

[’Q06000’, ’LIPL_RAT’], [’Q29524’, ’LIPL_SHEEP’]]
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The read function raises a ValueError if no Enzyme record is found, and also if more than one Enzyme
record is found.

The full set of Enzyme records can be downloaded as a single file (enzyme.dat) from the ExPASy FTP
site, containing 4877 records (release of 3 March 2009). To parse such a file containing multiple Enzyme
records, use the parse function in Bio.ExPASy.Enzyme to obtain an iterator:

>>> from Bio.ExPASy import Enzyme

>>> handle = open("enzyme.dat")

>>> records = Enzyme.parse(handle)

We can now iterate over the records one at a time. For example, we can make a list of all EC numbers
for which an Enzyme record is available:

>>> ecnumbers = [record["ID"] for record in records]

10.5 Accessing the ExPASy server

Swiss-Prot, Prosite, and Prosite documentation records can be downloaded from the ExPASy web server at
https://www.expasy.org. Four kinds of queries are available from ExPASy:

get prodoc entry To download a Prosite documentation record in HTML format

get prosite entry To download a Prosite record in HTML format

get prosite raw To download a Prosite or Prosite documentation record in raw format

get sprot raw To download a Swiss-Prot record in raw format

To access this web server from a Python script, we use the Bio.ExPASy module.

10.5.1 Retrieving a Swiss-Prot record

Let’s say we are looking at chalcone synthases for Orchids (see section 2.3 for some justification for looking
for interesting things about orchids). Chalcone synthase is involved in flavanoid biosynthesis in plants, and
flavanoids make lots of cool things like pigment colors and UV protectants.

If you do a search on Swiss-Prot, you can find three orchid proteins for Chalcone Synthase, id numbers
O23729, O23730, O23731. Now, let’s write a script which grabs these, and parses out some interesting
information.

First, we grab the records, using the get_sprot_raw() function of Bio.ExPASy. This function is very
nice since you can feed it an id and get back a handle to a raw text record (no HTML to mess with!). We
can the use Bio.SwissProt.read to pull out the Swiss-Prot record, or Bio.SeqIO.read to get a SeqRecord.
The following code accomplishes what I just wrote:

>>> from Bio import ExPASy

>>> from Bio import SwissProt

>>> accessions = ["O23729", "O23730", "O23731"]

>>> records = []

>>> for accession in accessions:

... handle = ExPASy.get_sprot_raw(accession)

... record = SwissProt.read(handle)

... records.append(record)
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If the accession number you provided to ExPASy.get_sprot_raw does not exist, then SwissProt.read(handle)

will raise a ValueError. You can catch ValueException exceptions to detect invalid accession numbers:

>>> for accession in accessions:

... handle = ExPASy.get_sprot_raw(accession)

... try:

... record = SwissProt.read(handle)

... except ValueException:

... print("WARNING: Accession %s not found" % accession)

... records.append(record)

10.5.2 Searching Swiss-Prot

Now, you may remark that I knew the records’ accession numbers beforehand. Indeed, get_sprot_raw()
needs either the entry name or an accession number. When you don’t have them handy, right now you could
use https://www.uniprot.org/ but we do not have a Python wrapper for searching this from a script.
Perhaps you could contribute here?

10.5.3 Retrieving Prosite and Prosite documentation records

Prosite and Prosite documentation records can be retrieved either in HTML format, or in raw format. To
parse Prosite and Prosite documentation records with Biopython, you should retrieve the records in raw
format. For other purposes, however, you may be interested in these records in HTML format.

To retrieve a Prosite or Prosite documentation record in raw format, use get_prosite_raw(). For
example, to download a Prosite record and print it out in raw text format, use

>>> from Bio import ExPASy

>>> handle = ExPASy.get_prosite_raw("PS00001")

>>> text = handle.read()

>>> print(text)

To retrieve a Prosite record and parse it into a Bio.Prosite.Record object, use

>>> from Bio import ExPASy

>>> from Bio import Prosite

>>> handle = ExPASy.get_prosite_raw("PS00001")

>>> record = Prosite.read(handle)

The same function can be used to retrieve a Prosite documentation record and parse it into a Bio.ExPASy.Prodoc.Record
object:

>>> from Bio import ExPASy

>>> from Bio.ExPASy import Prodoc

>>> handle = ExPASy.get_prosite_raw("PDOC00001")

>>> record = Prodoc.read(handle)

For non-existing accession numbers, ExPASy.get_prosite_raw returns a handle to an empty string.
When faced with an empty string, Prosite.read and Prodoc.read will raise a ValueError. You can catch
these exceptions to detect invalid accession numbers.

The functions get_prosite_entry() and get_prodoc_entry() are used to download Prosite and Prosite
documentation records in HTML format. To create a web page showing one Prosite record, you can use
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>>> from Bio import ExPASy

>>> handle = ExPASy.get_prosite_entry("PS00001")

>>> html = handle.read()

>>> with open("myprositerecord.html", "w") as out_handle:

... out_handle.write(html)

...

and similarly for a Prosite documentation record:

>>> from Bio import ExPASy

>>> handle = ExPASy.get_prodoc_entry("PDOC00001")

>>> html = handle.read()

>>> with open("myprodocrecord.html", "w") as out_handle:

... out_handle.write(html)

...

For these functions, an invalid accession number returns an error message in HTML format.

10.6 Scanning the Prosite database

ScanProsite allows you to scan protein sequences online against the Prosite database by providing a UniProt
or PDB sequence identifier or the sequence itself. For more information about ScanProsite, please see the
ScanProsite documentation as well as the documentation for programmatic access of ScanProsite.

You can use Biopython’s Bio.ExPASy.ScanProsite module to scan the Prosite database from Python.
This module both helps you to access ScanProsite programmatically, and to parse the results returned by
ScanProsite. To scan for Prosite patterns in the following protein sequence:

MEHKEVVLLLLLFLKSGQGEPLDDYVNTQGASLFSVTKKQLGAGSIEECAAKCEEDEEFT

CRAFQYHSKEQQCVIMAENRKSSIIIRMRDVVLFEKKVYLSECKTGNGKNYRGTMSKTKN

you can use the following code:

>>> sequence = "MEHKEVVLLLLLFLKSGQGEPLDDYVNTQGASLFSVTKKQLGAGSIEECAAKCEEDEEFT

CRAFQYHSKEQQCVIMAENRKSSIIIRMRDVVLFEKKVYLSECKTGNGKNYRGTMSKTKN"

>>> from Bio.ExPASy import ScanProsite

>>> handle = ScanProsite.scan(seq=sequence)

By executing handle.read(), you can obtain the search results in raw XML format. Instead, let’s use
Bio.ExPASy.ScanProsite.read to parse the raw XML into a Python object:

>>> result = ScanProsite.read(handle)

>>> type(result)

<class ’Bio.ExPASy.ScanProsite.Record’>

A Bio.ExPASy.ScanProsite.Record object is derived from a list, with each element in the list storing
one ScanProsite hit. This object also stores the number of hits, as well as the number of search sequences,
as returned by ScanProsite. This ScanProsite search resulted in six hits:

>>> result.n_seq

1

>>> result.n_match

6

>>> len(result)
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6

>>> result[0]

{’signature_ac’: u’PS50948’, ’level’: u’0’, ’stop’: 98, ’sequence_ac’: u’USERSEQ1’, ’start’: 16, ’score’: u’8.873’}

>>> result[1]

{’start’: 37, ’stop’: 39, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00005’}

>>> result[2]

{’start’: 45, ’stop’: 48, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00006’}

>>> result[3]

{’start’: 60, ’stop’: 62, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00005’}

>>> result[4]

{’start’: 80, ’stop’: 83, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00004’}

>>> result[5]

{’start’: 106, ’stop’: 111, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00008’}

Other ScanProsite parameters can be passed as keyword arguments; see the documentation for program-
matic access of ScanProsite for more information. As an example, passing lowscore=1 to include matches
with low level scores lets use find one additional hit:

>>> handle = ScanProsite.scan(seq=sequence, lowscore=1)

>>> result = ScanProsite.read(handle)

>>> result.n_match

7
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Chapter 11

Going 3D: The PDB module

Bio.PDB is a Biopython module that focuses on working with crystal structures of biological macromolecules.
Among other things, Bio.PDB includes a PDBParser class that produces a Structure object, which can be
used to access the atomic data in the file in a convenient manner. There is limited support for parsing
the information contained in the PDB header. PDB file format is no longer being modified or extended
to support new content and PDBx/mmCIF became the standard PDB archive format in 2014. All the
Worldwide Protein Data Bank (wwPDB) sites uses the macromolecular Crystallographic Information File
(mmCIF) data dictionaries to describe the information content of PDB entries. mmCIF uses a flexible and
extensible key-value pair format for representing macromolecular structural data and imposes no limitations
for the number of atoms, residues or chains that can be represented in a single PDB entry (no split entries!).

11.1 Reading and writing crystal structure files

11.1.1 Reading an mmCIF file

First create an MMCIFParser object:

>>> from Bio.PDB.MMCIFParser import MMCIFParser

>>> parser = MMCIFParser()

Then use this parser to create a structure object from the mmCIF file:

>>> structure = parser.get_structure("1fat", "1fat.cif")

To have some more low level access to an mmCIF file, you can use the MMCIF2Dict class to create a
Python dictionary that maps all mmCIF tags in an mmCIF file to their values. Whether there are multiple
values (like in the case of tag _atom_site.Cartn_y, which holds the y coordinates of all atoms) or a single
value (like the initial deposition date), the tag is mapped to a list of values. The dictionary is created from
the mmCIF file as follows:

>>> from Bio.PDB.MMCIF2Dict import MMCIF2Dict

>>> mmcif_dict = MMCIF2Dict("1FAT.cif")

Example: get the solvent content from an mmCIF file:

>>> sc = mmcif_dict["_exptl_crystal.density_percent_sol"]

Example: get the list of the y coordinates of all atoms

>>> y_list = mmcif_dict["_atom_site.Cartn_y"]

183



11.1.2 Reading files in the MMTF format

You can use the direct MMTFParser to read a structure from a file:

>>> from Bio.PDB.mmtf import MMTFParser

>>> structure = MMTFParser.get_structure("PDB/4CUP.mmtf")

Or you can use the same class to get a structure by its PDB ID:

>>> structure = MMTFParser.get_structure_from_url("4CUP")

This gives you a Structure object as if read from a PDB or mmCIF file.
You can also have access to the underlying data using the external MMTF library which Biopython is

using internally:

>>> from mmtf import fetch

>>> decoded_data = fetch("4CUP")

For example you can access just the X-coordinate.

>>> print(decoded_data.x_coord_list)

...

11.1.3 Reading a PDB file

First we create a PDBParser object:

>>> from Bio.PDB.PDBParser import PDBParser

>>> parser = PDBParser(PERMISSIVE=1)

The PERMISSIVE flag indicates that a number of common problems (see 11.7.1) associated with PDB
files will be ignored (but note that some atoms and/or residues will be missing). If the flag is not present a
PDBConstructionException will be generated if any problems are detected during the parse operation.

The Structure object is then produced by letting the PDBParser object parse a PDB file (the PDB file
in this case is called pdb1fat.ent, 1fat is a user defined name for the structure):

>>> structure_id = "1fat"

>>> filename = "pdb1fat.ent"

>>> structure = parser.get_structure(structure_id, filename)

You can extract the header and trailer (simple lists of strings) of the PDB file from the PDBParser object
with the get header and get trailer methods. Note however that many PDB files contain headers with
incomplete or erroneous information. Many of the errors have been fixed in the equivalent mmCIF files.
Hence, if you are interested in the header information, it is a good idea to extract information from mmCIF
files using the MMCIF2Dict tool described above, instead of parsing the PDB header.

Now that is clarified, let’s return to parsing the PDB header. The structure object has an attribute called
header which is a Python dictionary that maps header records to their values.

Example:

>>> resolution = structure.header["resolution"]

>>> keywords = structure.header["keywords"]

The available keys are name, head, deposition_date, release_date, structure_method, resolution,
structure_reference (which maps to a list of references), journal_reference, author, compound (which
maps to a dictionary with various information about the crystallized compound), has_missing_residues,

184



missing_residues, and astral (which maps to dictionary with additional information about the domain
if present).

has_missing_residues maps to a bool that is True if at least one non-empty REMARK 465 header line
was found. In this case you should assume that the molecule used in the experiment has some residues for
which no ATOM coordinates could be determined. missing_residues maps to a list of dictionaries with
information about the missing residues. The list of missing residues will be empty or incomplete if the PDB
header does not follow the template from the PDB specification.

The dictionary can also be created without creating a Structure object, ie. directly from the PDB file:

>>> from Bio.PDB import parse_pdb_header

>>> with open(filename, "r") as handle:

... header_dict = parse_pdb_header(handle)

...

11.1.4 Reading files in the PDB XML format

That’s not yet supported, but we are definitely planning to support that in the future (it’s not a lot of work).
Contact the Biopython developers via the mailing list if you need this.

11.1.5 Writing mmCIF files

The MMCIFIO class can be used to write structures to the mmCIF file format:

>>> io = MMCIFIO()

>>> io.set_structure(s)

>>> io.save("out.cif")

The Select class can be used in a similar way to PDBIO below. mmCIF dictionaries read using MMCIF2Dict

can also be written:

>>> io = MMCIFIO()

>>> io.set_dict(d)

>>> io.save("out.cif")

11.1.6 Writing PDB files

Use the PDBIO class for this. It’s easy to write out specific parts of a structure too, of course.
Example: saving a structure

>>> io = PDBIO()

>>> io.set_structure(s)

>>> io.save("out.pdb")

If you want to write out a part of the structure, make use of the Select class (also in PDBIO). Select has
four methods:

• accept_model(model)

• accept_chain(chain)

• accept_residue(residue)

• accept_atom(atom)

185



By default, every method returns 1 (which means the model/chain/residue/atom is included in the output).
By subclassing Select and returning 0 when appropriate you can exclude models, chains, etc. from the
output. Cumbersome maybe, but very powerful. The following code only writes out glycine residues:

>>> class GlySelect(Select):

... def accept_residue(self, residue):

... if residue.get_name()=="GLY":

... return True

... else:

... return False

...

>>> io = PDBIO()

>>> io.set_structure(s)

>>> io.save("gly_only.pdb", GlySelect())

If this is all too complicated for you, the Dice module contains a handy extract function that writes out
all residues in a chain between a start and end residue.

11.1.7 Writing MMTF files

To write structures to the MMTF file format:

>>> from Bio.PDB.mmtf import MMTFIO

>>> io = MMTFIO()

>>> io.set_structure(s)

>>> io.save("out.mmtf")

The Select class can be used as above. Note that the bonding information, secondary structure assign-
ment and some other information contained in standard MMTF files is not written out as it is not easy
to determine from the structure object. In addition, molecules that are grouped into the same entity in
standard MMTF files are treated as separate entities by MMTFIO.

11.2 Structure representation

The overall layout of a Structure object follows the so-called SMCRA (Structure/Model/Chain/Residue/Atom)
architecture:

• A structure consists of models

• A model consists of chains

• A chain consists of residues

• A residue consists of atoms

This is the way many structural biologists/bioinformaticians think about structure, and provides a simple
but efficient way to deal with structure. Additional stuff is essentially added when needed. A UML diagram
of the Structure object (forget about the Disordered classes for now) is shown in Fig. 11.1. Such a data
structure is not necessarily best suited for the representation of the macromolecular content of a structure,
but it is absolutely necessary for a good interpretation of the data present in a file that describes the structure
(typically a PDB or MMCIF file). If this hierarchy cannot represent the contents of a structure file, it is
fairly certain that the file contains an error or at least does not describe the structure unambiguously. If a
SMCRA data structure cannot be generated, there is reason to suspect a problem. Parsing a PDB file can
thus be used to detect likely problems. We will give several examples of this in section 11.7.1.
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Figure 11.1: UML diagram of SMCRA architecture of the Structure class used to represent a macromolec-
ular structure. Full lines with diamonds denote aggregation, full lines with arrows denote referencing, full
lines with triangles denote inheritance and dashed lines with triangles denote interface realization.
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Structure, Model, Chain and Residue are all subclasses of the Entity base class. The Atom class only
(partly) implements the Entity interface (because an Atom does not have children).

For each Entity subclass, you can extract a child by using a unique id for that child as a key (e.g. you
can extract an Atom object from a Residue object by using an atom name string as a key, you can extract
a Chain object from a Model object by using its chain identifier as a key).

Disordered atoms and residues are represented by DisorderedAtom and DisorderedResidue classes, which
are both subclasses of the DisorderedEntityWrapper base class. They hide the complexity associated with
disorder and behave exactly as Atom and Residue objects.

In general, a child Entity object (i.e. Atom, Residue, Chain, Model) can be extracted from its parent
(i.e. Residue, Chain, Model, Structure, respectively) by using an id as a key.

>>> child_entity = parent_entity[child_id]

You can also get a list of all child Entities of a parent Entity object. Note that this list is sorted in a
specific way (e.g. according to chain identifier for Chain objects in a Model object).

>>> child_list = parent_entity.get_list()

You can also get the parent from a child:

>>> parent_entity = child_entity.get_parent()

At all levels of the SMCRA hierarchy, you can also extract a full id. The full id is a tuple containing all
id’s starting from the top object (Structure) down to the current object. A full id for a Residue object e.g.
is something like:

>>> full_id = residue.get_full_id()

>>> print(full_id)

("1abc", 0, "A", ("", 10, "A"))

This corresponds to:

• The Structure with id "1abc"

• The Model with id 0

• The Chain with id "A"

• The Residue with id ("", 10, "A")

The Residue id indicates that the residue is not a hetero-residue (nor a water) because it has a blank hetero
field, that its sequence identifier is 10 and that its insertion code is "A".

To get the entity’s id, use the get_id method:

>>> entity.get_id()

You can check if the entity has a child with a given id by using the has_id method:

>>> entity.has_id(entity_id)

The length of an entity is equal to its number of children:

>>> nr_children = len(entity)

It is possible to delete, rename, add, etc. child entities from a parent entity, but this does not include
any sanity checks (e.g. it is possible to add two residues with the same id to one chain). This really should
be done via a nice Decorator class that includes integrity checking, but you can take a look at the code
(Entity.py) if you want to use the raw interface.
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11.2.1 Structure

The Structure object is at the top of the hierarchy. Its id is a user given string. The Structure contains
a number of Model children. Most crystal structures (but not all) contain a single model, while NMR
structures typically consist of several models. Disorder in crystal structures of large parts of molecules can
also result in several models.

11.2.2 Model

The id of the Model object is an integer, which is derived from the position of the model in the parsed file
(they are automatically numbered starting from 0). Crystal structures generally have only one model (with
id 0), while NMR files usually have several models. Whereas many PDB parsers assume that there is only
one model, the Structure class in Bio.PDB is designed such that it can easily handle PDB files with more
than one model.

As an example, to get the first model from a Structure object, use

>>> first_model = structure[0]

The Model object stores a list of Chain children.

11.2.3 Chain

The id of a Chain object is derived from the chain identifier in the PDB/mmCIF file, and is a single character
(typically a letter). Each Chain in a Model object has a unique id. As an example, to get the Chain object
with identifier “A” from a Model object, use

>>> chain_A = model["A"]

The Chain object stores a list of Residue children.

11.2.4 Residue

A residue id is a tuple with three elements:

• The hetero-field (hetfield): this is

– ’W’ in the case of a water molecule;

– ’H_’ followed by the residue name for other hetero residues (e.g. ’H_GLC’ in the case of a glucose
molecule);

– blank for standard amino and nucleic acids.

This scheme is adopted for reasons described in section 11.4.1.

• The sequence identifier (resseq), an integer describing the position of the residue in the chain (e.g.,
100);

• The insertion code (icode); a string, e.g. ’A’. The insertion code is sometimes used to preserve a
certain desirable residue numbering scheme. A Ser 80 insertion mutant (inserted e.g. between a Thr
80 and an Asn 81 residue) could e.g. have sequence identifiers and insertion codes as follows: Thr 80
A, Ser 80 B, Asn 81. In this way the residue numbering scheme stays in tune with that of the wild
type structure.

The id of the above glucose residue would thus be (’H GLC’, 100, ’A’). If the hetero-flag and insertion
code are blank, the sequence identifier alone can be used:
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# Full id

>>> residue=chain[(" ", 100, " ")]

# Shortcut id

>>> residue=chain[100]

The reason for the hetero-flag is that many, many PDB files use the same sequence identifier for an amino
acid and a hetero-residue or a water, which would create obvious problems if the hetero-flag was not used.

Unsurprisingly, a Residue object stores a set of Atom children. It also contains a string that specifies the
residue name (e.g. “ASN”) and the segment identifier of the residue (well known to X-PLOR users, but not
used in the construction of the SMCRA data structure).

Let’s look at some examples. Asn 10 with a blank insertion code would have residue id (’ ’, 10, ’

’). Water 10 would have residue id (’W’, 10, ’ ’). A glucose molecule (a hetero residue with residue
name GLC) with sequence identifier 10 would have residue id (’H GLC’, 10, ’ ’). In this way, the three
residues (with the same insertion code and sequence identifier) can be part of the same chain because their
residue id’s are distinct.

In most cases, the hetflag and insertion code fields will be blank, e.g. (’ ’, 10, ’ ’). In these cases,
the sequence identifier can be used as a shortcut for the full id:

# use full id

>>> res10 = chain[(" ", 10, " ")]

# use shortcut

>>> res10 = chain[10]

Each Residue object in a Chain object should have a unique id. However, disordered residues are dealt
with in a special way, as described in section 11.3.3.

A Residue object has a number of additional methods:

>>> residue.get_resname() # returns the residue name, e.g. "ASN"

>>> residue.is_disordered() # returns 1 if the residue has disordered atoms

>>> residue.get_segid() # returns the SEGID, e.g. "CHN1"

>>> residue.has_id(name) # test if a residue has a certain atom

You can use is aa(residue) to test if a Residue object is an amino acid.

11.2.5 Atom

The Atom object stores the data associated with an atom, and has no children. The id of an atom is its
atom name (e.g. “OG” for the side chain oxygen of a Ser residue). An Atom id needs to be unique in a
Residue. Again, an exception is made for disordered atoms, as described in section 11.3.2.

The atom id is simply the atom name (eg. ’CA’). In practice, the atom name is created by stripping all
spaces from the atom name in the PDB file.

However, in PDB files, a space can be part of an atom name. Often, calcium atoms are called ’CA..’

in order to distinguish them from Cα atoms (which are called ’.CA.’). In cases were stripping the spaces
would create problems (ie. two atoms called ’CA’ in the same residue) the spaces are kept.

In a PDB file, an atom name consists of 4 chars, typically with leading and trailing spaces. Often these
spaces can be removed for ease of use (e.g. an amino acid Cα atom is labeled “.CA.” in a PDB file, where
the dots represent spaces). To generate an atom name (and thus an atom id) the spaces are removed, unless
this would result in a name collision in a Residue (i.e. two Atom objects with the same atom name and id).
In the latter case, the atom name including spaces is tried. This situation can e.g. happen when one residue
contains atoms with names “.CA.” and “CA..”, although this is not very likely.

The atomic data stored includes the atom name, the atomic coordinates (including standard deviation if
present), the B factor (including anisotropic B factors and standard deviation if present), the altloc specifier

190



and the full atom name including spaces. Less used items like the atom element number or the atomic charge
sometimes specified in a PDB file are not stored.

To manipulate the atomic coordinates, use the transform method of the Atom object. Use the set coord

method to specify the atomic coordinates directly.
An Atom object has the following additional methods:

>>> a.get_name() # atom name (spaces stripped, e.g. "CA")

>>> a.get_id() # id (equals atom name)

>>> a.get_coord() # atomic coordinates

>>> a.get_vector() # atomic coordinates as Vector object

>>> a.get_bfactor() # isotropic B factor

>>> a.get_occupancy() # occupancy

>>> a.get_altloc() # alternative location specifier

>>> a.get_sigatm() # standard deviation of atomic parameters

>>> a.get_siguij() # standard deviation of anisotropic B factor

>>> a.get_anisou() # anisotropic B factor

>>> a.get_fullname() # atom name (with spaces, e.g. ".CA.")

To represent the atom coordinates, siguij, anisotropic B factor and sigatm Numpy arrays are used.
The get vector method returns a Vector object representation of the coordinates of the Atom object,

allowing you to do vector operations on atomic coordinates. Vector implements the full set of 3D vector
operations, matrix multiplication (left and right) and some advanced rotation-related operations as well.

As an example of the capabilities of Bio.PDB’s Vector module, suppose that you would like to find the
position of a Gly residue’s Cβ atom, if it had one. Rotating the N atom of the Gly residue along the Cα-C
bond over -120 degrees roughly puts it in the position of a virtual Cβ atom. Here’s how to do it, making
use of the rotaxis method (which can be used to construct a rotation around a certain axis) of the Vector

module:

# get atom coordinates as vectors

>>> n = residue["N"].get_vector()

>>> c = residue["C"].get_vector()

>>> ca = residue["CA"].get_vector()

# center at origin

>>> n = n - ca

>>> c = c - ca

# find rotation matrix that rotates n

# -120 degrees along the ca-c vector

>>> rot = rotaxis(-pi * 120.0/180.0, c)

# apply rotation to ca-n vector

>>> cb_at_origin = n.left_multiply(rot)

# put on top of ca atom

>>> cb = cb_at_origin+ca

This example shows that it’s possible to do some quite nontrivial vector operations on atomic data, which
can be quite useful. In addition to all the usual vector operations (cross (use **), and dot (use *) product,
angle, norm, etc.) and the above mentioned rotaxis function, the Vector module also has methods to
rotate (rotmat) or reflect (refmat) one vector on top of another.

11.2.6 Extracting a specific Atom/Residue/Chain/Model from a Structure

These are some examples:
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>>> model = structure[0]

>>> chain = model["A"]

>>> residue = chain[100]

>>> atom = residue["CA"]

Note that you can use a shortcut:

>>> atom = structure[0]["A"][100]["CA"]

11.3 Disorder

Bio.PDB can handle both disordered atoms and point mutations (i.e. a Gly and an Ala residue in the same
position).

11.3.1 General approach

Disorder should be dealt with from two points of view: the atom and the residue points of view. In general,
we have tried to encapsulate all the complexity that arises from disorder. If you just want to loop over all
Cα atoms, you do not care that some residues have a disordered side chain. On the other hand it should also
be possible to represent disorder completely in the data structure. Therefore, disordered atoms or residues
are stored in special objects that behave as if there is no disorder. This is done by only representing a subset
of the disordered atoms or residues. Which subset is picked (e.g. which of the two disordered OG side chain
atom positions of a Ser residue is used) can be specified by the user.

11.3.2 Disordered atoms

Disordered atoms are represented by ordinary Atom objects, but all Atom objects that represent the same
physical atom are stored in a DisorderedAtom object (see Fig. 11.1). Each Atom object in a DisorderedAtom

object can be uniquely indexed using its altloc specifier. The DisorderedAtom object forwards all uncaught
method calls to the selected Atom object, by default the one that represents the atom with the highest
occupancy. The user can of course change the selected Atom object, making use of its altloc specifier. In this
way atom disorder is represented correctly without much additional complexity. In other words, if you are
not interested in atom disorder, you will not be bothered by it.

Each disordered atom has a characteristic altloc identifier. You can specify that a DisorderedAtom object
should behave like the Atom object associated with a specific altloc identifier:

>>> atom.disordered_select("A") # select altloc A atom

>>> print(atom.get_altloc())

"A"

>>> atom.disordered_select("B") # select altloc B atom

>>> print(atom.get_altloc())

"B"

11.3.3 Disordered residues

Common case

The most common case is a residue that contains one or more disordered atoms. This is evidently solved by
using DisorderedAtom objects to represent the disordered atoms, and storing the DisorderedAtom object in
a Residue object just like ordinary Atom objects. The DisorderedAtom will behave exactly like an ordinary
atom (in fact the atom with the highest occupancy) by forwarding all uncaught method calls to one of the
Atom objects (the selected Atom object) it contains.
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Point mutations

A special case arises when disorder is due to a point mutation, i.e. when two or more point mutants of a
polypeptide are present in the crystal. An example of this can be found in PDB structure 1EN2.

Since these residues belong to a different residue type (e.g. let’s say Ser 60 and Cys 60) they should not
be stored in a single Residue object as in the common case. In this case, each residue is represented by one
Residue object, and both Residue objects are stored in a single DisorderedResidue object (see Fig. 11.1).

The DisorderedResidue object forwards all uncaught methods to the selected Residue object (by default
the last Residue object added), and thus behaves like an ordinary residue. Each Residue object in a
DisorderedResidue object can be uniquely identified by its residue name. In the above example, residue
Ser 60 would have id “SER” in the DisorderedResidue object, while residue Cys 60 would have id “CYS”.
The user can select the active Residue object in a DisorderedResidue object via this id.

Example: suppose that a chain has a point mutation at position 10, consisting of a Ser and a Cys residue.
Make sure that residue 10 of this chain behaves as the Cys residue.

>>> residue = chain[10]

>>> residue.disordered_select("CYS")

In addition, you can get a list of all Atom objects (ie. all DisorderedAtom objects are ’unpacked’ to their
individual Atom objects) using the get unpacked list method of a (Disordered)Residue object.

11.4 Hetero residues

11.4.1 Associated problems

A common problem with hetero residues is that several hetero and non-hetero residues present in the same
chain share the same sequence identifier (and insertion code). Therefore, to generate a unique id for each
hetero residue, waters and other hetero residues are treated in a different way.

Remember that Residue object have the tuple (hetfield, resseq, icode) as id. The hetfield is blank (“ ”)
for amino and nucleic acids, and a string for waters and other hetero residues. The content of the hetfield is
explained below.

11.4.2 Water residues

The hetfield string of a water residue consists of the letter “W”. So a typical residue id for a water is (“W”,
1, “ ”).

11.4.3 Other hetero residues

The hetfield string for other hetero residues starts with “H ” followed by the residue name. A glucose molecule
e.g. with residue name “GLC” would have hetfield “H GLC”. Its residue id could e.g. be (“H GLC”, 1, “
”).

11.5 Navigating through a Structure object

Parse a PDB file, and extract some Model, Chain, Residue and Atom objects

>>> from Bio.PDB.PDBParser import PDBParser

>>> parser = PDBParser()

>>> structure = parser.get_structure("test", "1fat.pdb")

>>> model = structure[0]

>>> chain = model["A"]
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>>> residue = chain[1]

>>> atom = residue["CA"]

Iterating through all atoms of a structure

>>> p = PDBParser()

>>> structure = p.get_structure("X", "pdb1fat.ent")

>>> for model in structure:

... for chain in model:

... for residue in chain:

... for atom in residue:

... print(atom)

...

There is a shortcut if you want to iterate over all atoms in a structure:

>>> atoms = structure.get_atoms()

>>> for atom in atoms:

... print(atom)

...

Similarly, to iterate over all atoms in a chain, use

>>> atoms = chain.get_atoms()

>>> for atom in atoms:

... print(atom)

...

Iterating over all residues of a model

or if you want to iterate over all residues in a model:

>>> residues = model.get_residues()

>>> for residue in residues:

... print(residue)

...

You can also use the Selection.unfold_entities function to get all residues from a structure:

>>> res_list = Selection.unfold_entities(structure, "R")

or to get all atoms from a chain:

>>> atom_list = Selection.unfold_entities(chain, "A")

Obviously, A=atom, R=residue, C=chain, M=model, S=structure. You can use this to go up in the
hierarchy, e.g. to get a list of (unique) Residue or Chain parents from a list of Atoms:

>>> residue_list = Selection.unfold_entities(atom_list, "R")

>>> chain_list = Selection.unfold_entities(atom_list, "C")

For more info, see the API documentation.

Extract a hetero residue from a chain (e.g. a glucose (GLC) moiety with resseq
10)

>>> residue_id = ("H_GLC", 10, " ")

>>> residue = chain[residue_id]
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Print all hetero residues in chain

>>> for residue in chain.get_list():

... residue_id = residue.get_id()

... hetfield = residue_id[0]

... if hetfield[0]=="H":

... print(residue_id)

...

Print out the coordinates of all CA atoms in a structure with B factor greater
than 50

>>> for model in structure.get_list():

... for chain in model.get_list():

... for residue in chain.get_list():

... if residue.has_id("CA"):

... ca = residue["CA"]

... if ca.get_bfactor() > 50.0:

... print(ca.get_coord())

...

Print out all the residues that contain disordered atoms

>>> for model in structure.get_list():

... for chain in model.get_list():

... for residue in chain.get_list():

... if residue.is_disordered():

... resseq = residue.get_id()[1]

... resname = residue.get_resname()

... model_id = model.get_id()

... chain_id = chain.get_id()

... print(model_id, chain_id, resname, resseq)

...

Loop over all disordered atoms, and select all atoms with altloc A (if present)

This will make sure that the SMCRA data structure will behave as if only the atoms with altloc A are
present.

>>> for model in structure.get_list():

... for chain in model.get_list():

... for residue in chain.get_list():

... if residue.is_disordered():

... for atom in residue.get_list():

... if atom.is_disordered():

... if atom.disordered_has_id("A"):

... atom.disordered_select("A")

...

Extracting polypeptides from a Structure object

To extract polypeptides from a structure, construct a list of Polypeptide objects from a Structure object
using PolypeptideBuilder as follows:
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>>> model_nr = 1

>>> polypeptide_list = build_peptides(structure, model_nr)

>>> for polypeptide in polypeptide_list:

... print(polypeptide)

...

A Polypeptide object is simply a UserList of Residue objects, and is always created from a single Model
(in this case model 1). You can use the resulting Polypeptide object to get the sequence as a Seq object or
to get a list of Cα atoms as well. Polypeptides can be built using a C-N or a Cα-Cα distance criterion.

Example:

# Using C-N

>>> ppb=PPBuilder()

>>> for pp in ppb.build_peptides(structure):

... print(pp.get_sequence())

...

# Using CA-CA

>>> ppb=CaPPBuilder()

>>> for pp in ppb.build_peptides(structure):

... print(pp.get_sequence())

...

Note that in the above case only model 0 of the structure is considered by PolypeptideBuilder. However,
it is possible to use PolypeptideBuilder to build Polypeptide objects from Model and Chain objects as
well.

Obtaining the sequence of a structure

The first thing to do is to extract all polypeptides from the structure (as above). The sequence of each
polypeptide can then easily be obtained from the Polypeptide objects. The sequence is represented as a
Biopython Seq object, and its alphabet is defined by a ProteinAlphabet object.

Example:

>>> seq = polypeptide.get_sequence()

>>> print(seq)

Seq(’SNVVE...’, <class Bio.Alphabet.ProteinAlphabet>)

11.6 Analyzing structures

11.6.1 Measuring distances

The minus operator for atoms has been overloaded to return the distance between two atoms.

# Get some atoms

>>> ca1 = residue1["CA"]

>>> ca2 = residue2["CA"]

# Simply subtract the atoms to get their distance

>>> distance = ca1-ca2

11.6.2 Measuring angles

Use the vector representation of the atomic coordinates, and the calc angle function from the Vector

module:
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>>> vector1 = atom1.get_vector()

>>> vector2 = atom2.get_vector()

>>> vector3 = atom3.get_vector()

>>> angle = calc_angle(vector1, vector2, vector3)

11.6.3 Measuring torsion angles

Use the vector representation of the atomic coordinates, and the calc dihedral function from the Vector

module:

>>> vector1 = atom1.get_vector()

>>> vector2 = atom2.get_vector()

>>> vector3 = atom3.get_vector()

>>> vector4 = atom4.get_vector()

>>> angle = calc_dihedral(vector1, vector2, vector3, vector4)

11.6.4 Determining atom-atom contacts

Use NeighborSearch to perform neighbor lookup. The neighbor lookup is done using a KD tree module
written in C (see Bio.KDTree), making it very fast. It also includes a fast method to find all point pairs
within a certain distance of each other.

11.6.5 Superimposing two structures

Use a Superimposer object to superimpose two coordinate sets. This object calculates the rotation and
translation matrix that rotates two lists of atoms on top of each other in such a way that their RMSD is
minimized. Of course, the two lists need to contain the same number of atoms. The Superimposer object
can also apply the rotation/translation to a list of atoms. The rotation and translation are stored as a
tuple in the rotran attribute of the Superimposer object (note that the rotation is right multiplying!). The
RMSD is stored in the rmsd attribute.

The algorithm used by Superimposer comes from [19, Golub & Van Loan] and makes use of singular
value decomposition (this is implemented in the general Bio.SVDSuperimposer module).

Example:

>>> sup = Superimposer()

# Specify the atom lists

# ’fixed’ and ’moving’ are lists of Atom objects

# The moving atoms will be put on the fixed atoms

>>> sup.set_atoms(fixed, moving)

# Print rotation/translation/rmsd

>>> print(sup.rotran)

>>> print(sup.rms)

# Apply rotation/translation to the moving atoms

>>> sup.apply(moving)

To superimpose two structures based on their active sites, use the active site atoms to calculate the
rotation/translation matrices (as above), and apply these to the whole molecule.

11.6.6 Mapping the residues of two related structures onto each other

First, create an alignment file in FASTA format, then use the StructureAlignment class. This class can
also be used for alignments with more than two structures.
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Code Secondary structure

H α-helix
B Isolated β-bridge residue
E Strand
G 3-10 helix
I Π-helix
T Turn
S Bend
- Other

Table 11.1: DSSP codes in Bio.PDB.

11.6.7 Calculating the Half Sphere Exposure

Half Sphere Exposure (HSE) is a new, 2D measure of solvent exposure [22]. Basically, it counts the number
of Cα atoms around a residue in the direction of its side chain, and in the opposite direction (within a radius
of 13Å). Despite its simplicity, it outperforms many other measures of solvent exposure.

HSE comes in two flavors: HSEα and HSEβ. The former only uses the Cα atom positions, while the
latter uses the Cα and Cβ atom positions. The HSE measure is calculated by the HSExposure class, which
can also calculate the contact number. The latter class has methods which return dictionaries that map a
Residue object to its corresponding HSEα, HSEβ and contact number values.

Example:

>>> model = structure[0]

>>> hse = HSExposure()

# Calculate HSEalpha

>>> exp_ca = hse.calc_hs_exposure(model, option="CA3")

# Calculate HSEbeta

>>> exp_cb=hse.calc_hs_exposure(model, option="CB")

# Calculate classical coordination number

>>> exp_fs = hse.calc_fs_exposure(model)

# Print HSEalpha for a residue

>>> print(exp_ca[some_residue])

11.6.8 Determining the secondary structure

For this functionality, you need to install DSSP (and obtain a license for it — free for academic use, see
https://swift.cmbi.umcn.nl/gv/dssp/). Then use the DSSP class, which maps Residue objects to their
secondary structure (and accessible surface area). The DSSP codes are listed in Table 11.1. Note that DSSP
(the program, and thus by consequence the class) cannot handle multiple models!

The DSSP class can also be used to calculate the accessible surface area of a residue. But see also section
11.6.9.

11.6.9 Calculating the residue depth

Residue depth is the average distance of a residue’s atoms from the solvent accessible surface. It’s a fairly
new and very powerful parameterization of solvent accessibility. For this functionality, you need to install
Michel Sanner’s MSMS program (https://www.scripps.edu/sanner/html/msms_home.html). Then use
the ResidueDepth class. This class behaves as a dictionary which maps Residue objects to corresponding
(residue depth, Cα depth) tuples. The Cα depth is the distance of a residue’s Cα atom to the solvent
accessible surface.

Example:
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>>> model = structure[0]

>>> rd = ResidueDepth(model, pdb_file)

>>> residue_depth, ca_depth=rd[some_residue]

You can also get access to the molecular surface itself (via the get surface function), in the form of a
Numeric Python array with the surface points.

11.7 Common problems in PDB files

It is well known that many PDB files contain semantic errors (not the structures themselves, but their
representation in PDB files). Bio.PDB tries to handle this in two ways. The PDBParser object can behave
in two ways: a restrictive way and a permissive way, which is the default.

Example:

# Permissive parser

>>> parser = PDBParser(PERMISSIVE=1)

>>> parser = PDBParser() # The same (default)

# Strict parser

>>> strict_parser = PDBParser(PERMISSIVE=0)

In the permissive state (DEFAULT), PDB files that obviously contain errors are “corrected” (i.e. some
residues or atoms are left out). These errors include:

• Multiple residues with the same identifier

• Multiple atoms with the same identifier (taking into account the altloc identifier)

These errors indicate real problems in the PDB file (for details see [20, Hamelryck and Manderick, 2003]).
In the restrictive state, PDB files with errors cause an exception to occur. This is useful to find errors in
PDB files.

Some errors however are automatically corrected. Normally each disordered atom should have a non-
blank altloc identifier. However, there are many structures that do not follow this convention, and have
a blank and a non-blank identifier for two disordered positions of the same atom. This is automatically
interpreted in the right way.

Sometimes a structure contains a list of residues belonging to chain A, followed by residues belonging
to chain B, and again followed by residues belonging to chain A, i.e. the chains are ’broken’. This is also
correctly interpreted.

11.7.1 Examples

The PDBParser/Structure class was tested on about 800 structures (each belonging to a unique SCOP
superfamily). This takes about 20 minutes, or on average 1.5 seconds per structure. Parsing the structure
of the large ribosomal subunit (1FKK), which contains about 64000 atoms, takes 10 seconds on a 1000 MHz
PC.

Three exceptions were generated in cases where an unambiguous data structure could not be built. In all
three cases, the likely cause is an error in the PDB file that should be corrected. Generating an exception in
these cases is much better than running the chance of incorrectly describing the structure in a data structure.

11.7.1.1 Duplicate residues

One structure contains two amino acid residues in one chain with the same sequence identifier (resseq 3)
and icode. Upon inspection it was found that this chain contains the residues Thr A3, . . . , Gly A202, Leu
A3, Glu A204. Clearly, Leu A3 should be Leu A203. A couple of similar situations exist for structure 1FFK
(which e.g. contains Gly B64, Met B65, Glu B65, Thr B67, i.e. residue Glu B65 should be Glu B66).
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11.7.1.2 Duplicate atoms

Structure 1EJG contains a Ser/Pro point mutation in chain A at position 22. In turn, Ser 22 contains some
disordered atoms. As expected, all atoms belonging to Ser 22 have a non-blank altloc specifier (B or C). All
atoms of Pro 22 have altloc A, except the N atom which has a blank altloc. This generates an exception,
because all atoms belonging to two residues at a point mutation should have non-blank altloc. It turns out
that this atom is probably shared by Ser and Pro 22, as Ser 22 misses the N atom. Again, this points to
a problem in the file: the N atom should be present in both the Ser and the Pro residue, in both cases
associated with a suitable altloc identifier.

11.7.2 Automatic correction

Some errors are quite common and can be easily corrected without much risk of making a wrong interpre-
tation. These cases are listed below.

11.7.2.1 A blank altloc for a disordered atom

Normally each disordered atom should have a non-blank altloc identifier. However, there are many structures
that do not follow this convention, and have a blank and a non-blank identifier for two disordered positions
of the same atom. This is automatically interpreted in the right way.

11.7.2.2 Broken chains

Sometimes a structure contains a list of residues belonging to chain A, followed by residues belonging to
chain B, and again followed by residues belonging to chain A, i.e. the chains are “broken”. This is correctly
interpreted.

11.7.3 Fatal errors

Sometimes a PDB file cannot be unambiguously interpreted. Rather than guessing and risking a mistake,
an exception is generated, and the user is expected to correct the PDB file. These cases are listed below.

11.7.3.1 Duplicate residues

All residues in a chain should have a unique id. This id is generated based on:

• The sequence identifier (resseq).

• The insertion code (icode).

• The hetfield string (“W” for waters and “H ” followed by the residue name for other hetero residues)

• The residue names of the residues in the case of point mutations (to store the Residue objects in a
DisorderedResidue object).

If this does not lead to a unique id something is quite likely wrong, and an exception is generated.

11.7.3.2 Duplicate atoms

All atoms in a residue should have a unique id. This id is generated based on:

• The atom name (without spaces, or with spaces if a problem arises).

• The altloc specifier.

If this does not lead to a unique id something is quite likely wrong, and an exception is generated.
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11.8 Accessing the Protein Data Bank

11.8.1 Downloading structures from the Protein Data Bank

Structures can be downloaded from the PDB (Protein Data Bank) by using the retrieve pdb file method
on a PDBList object. The argument for this method is the PDB identifier of the structure.

>>> pdbl = PDBList()

>>> pdbl.retrieve_pdb_file("1FAT")

The PDBList class can also be used as a command-line tool:

python PDBList.py 1fat

The downloaded file will be called pdb1fat.ent and stored in the current working directory. Note that the
retrieve pdb file method also has an optional argument pdir that specifies a specific directory in which
to store the downloaded PDB files.

The retrieve pdb file method also has some options to specify the compression format used for the
download, and the program used for local decompression (default .Z format and gunzip). In addition, the
PDB ftp site can be specified upon creation of the PDBList object. By default, the server of the Worldwide
Protein Data Bank (ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdb/) is used. See the
API documentation for more details. Thanks again to Kristian Rother for donating this module.

11.8.2 Downloading the entire PDB

The following commands will store all PDB files in the /data/pdb directory:

python PDBList.py all /data/pdb

python PDBList.py all /data/pdb -d

The API method for this is called download entire pdb. Adding the -d option will store all files in the same
directory. Otherwise, they are sorted into PDB-style subdirectories according to their PDB ID’s. Depending
on the traffic, a complete download will take 2-4 days.

11.8.3 Keeping a local copy of the PDB up to date

This can also be done using the PDBList object. One simply creates a PDBList object (specifying the
directory where the local copy of the PDB is present) and calls the update pdb method:

>>> pl = PDBList(pdb="/data/pdb")

>>> pl.update_pdb()

One can of course make a weekly cronjob out of this to keep the local copy automatically up-to-date. The
PDB ftp site can also be specified (see API documentation).

PDBList has some additional methods that can be of use. The get all obsolete method can be used to
get a list of all obsolete PDB entries. The changed this week method can be used to obtain the entries that
were added, modified or obsoleted during the current week. For more info on the possibilities of PDBList,
see the API documentation.
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11.9 General questions

11.9.1 How well tested is Bio.PDB?

Pretty well, actually. Bio.PDB has been extensively tested on nearly 5500 structures from the PDB - all
structures seemed to be parsed correctly. More details can be found in the Bio.PDB Bioinformatics article.
Bio.PDB has been used/is being used in many research projects as a reliable tool. In fact, I’m using Bio.PDB
almost daily for research purposes and continue working on improving it and adding new features.

11.9.2 How fast is it?

The PDBParser performance was tested on about 800 structures (each belonging to a unique SCOP super-
family). This takes about 20 minutes, or on average 1.5 seconds per structure. Parsing the structure of the
large ribosomal subunit (1FKK), which contains about 64000 atoms, takes 10 seconds on a 1000 MHz PC.
In short: it’s more than fast enough for many applications.

11.9.3 Is there support for molecular graphics?

Not directly, mostly since there are quite a few Python based/Python aware solutions already, that can
potentially be used with Bio.PDB. My choice is Pymol, BTW (I’ve used this successfully with Bio.PDB, and
there will probably be specific PyMol modules in Bio.PDB soon/some day). Python based/aware molecular
graphics solutions include:

• PyMol: https://pymol.org/

• Chimera: https://www.cgl.ucsf.edu/chimera/

• PMV: http://www.scripps.edu/~sanner/python/

• Coot: https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

• CCP4mg: http://www.ccp4.ac.uk/MG/

• mmLib: http://pymmlib.sourceforge.net/

• VMD: https://www.ks.uiuc.edu/Research/vmd/

• MMTK: http://dirac.cnrs-orleans.fr/MMTK/

11.9.4 Who’s using Bio.PDB?

Bio.PDB was used in the construction of DISEMBL, a web server that predicts disordered regions in proteins
(http://dis.embl.de/), and COLUMBA, a website that provides annotated protein structures (http:
//www.columba-db.de/). Bio.PDB has also been used to perform a large scale search for active sites
similarities between protein structures in the PDB [21, Hamelryck, 2003], and to develop a new algorithm
that identifies linear secondary structure elements [32, Majumdar et al., 2005].

Judging from requests for features and information, Bio.PDB is also used by several LPCs (Large Phar-
maceutical Companies :-).
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Chapter 12

Bio.PopGen: Population genetics

Bio.PopGen is a Biopython module supporting population genetics, available in Biopython 1.44 onwards.
The objective for the module is to support widely used data formats, applications and databases.

12.1 GenePop

GenePop (http://genepop.curtin.edu.au/) is a popular population genetics software package supporting
Hardy-Weinberg tests, linkage desiquilibrium, population diferentiation, basic statistics, Fst and migration
estimates, among others. GenePop does not supply sequence based statistics as it doesn’t handle sequence
data. The GenePop file format is supported by a wide range of other population genetic software applications,
thus making it a relevant format in the population genetics field.

Bio.PopGen provides a parser and generator of GenePop file format. Utilities to manipulate the content
of a record are also provided. Here is an example on how to read a GenePop file (you can find example
GenePop data files in the Test/PopGen directory of Biopython):

from Bio.PopGen import GenePop

with open("example.gen") as handle:

rec = GenePop.read(handle)

This will read a file called example.gen and parse it. If you do print rec, the record will be output again,
in GenePop format.

The most important information in rec will be the loci names and population information (but there is
more – use help(GenePop.Record) to check the API documentation). Loci names can be found on rec.loci list.
Population information can be found on rec.populations. Populations is a list with one element per popula-
tion. Each element is itself a list of individuals, each individual is a pair composed by individual name and
a list of alleles (2 per marker), here is an example for rec.populations:

[

[

("Ind1", [(1, 2), (3, 3), (200, 201)]),

("Ind2", [(2, None), (3, 3), (None, None)]),

],

[("Other1", [(1, 1), (4, 3), (200, 200)]),],

]

So we have two populations, the first with two individuals, the second with only one. The first individual
of the first population is called Ind1, allelic information for each of the 3 loci follows. Please note that for
any locus, information might be missing (see as an example, Ind2 above).
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A few utility functions to manipulate GenePop records are made available, here is an example:

from Bio.PopGen import GenePop

# Imagine that you have loaded rec, as per the code snippet above...

rec.remove_population(pos)

# Removes a population from a record, pos is the population position in

# rec.populations, remember that it starts on position 0.

# rec is altered.

rec.remove_locus_by_position(pos)

# Removes a locus by its position, pos is the locus position in

# rec.loci_list, remember that it starts on position 0.

# rec is altered.

rec.remove_locus_by_name(name)

# Removes a locus by its name, name is the locus name as in

# rec.loci_list. If the name doesn’t exist the function fails

# silently.

# rec is altered.

rec_loci = rec.split_in_loci()

# Splits a record in loci, that is, for each loci, it creates a new

# record, with a single loci and all populations.

# The result is returned in a dictionary, being each key the locus name.

# The value is the GenePop record.

# rec is not altered.

rec_pops = rec.split_in_pops(pop_names)

# Splits a record in populations, that is, for each population, it creates

# a new record, with a single population and all loci.

# The result is returned in a dictionary, being each key

# the population name. As population names are not available in GenePop,

# they are passed in array (pop_names).

# The value of each dictionary entry is the GenePop record.

# rec is not altered.

GenePop does not support population names, a limitation which can be cumbersome at times. Function-
ality to enable population names is currently being planned for Biopython. These extensions won’t break
compatibility in any way with the standard format. In the medium term, we would also like to support the
GenePop web service.
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Chapter 13

Phylogenetics with Bio.Phylo

The Bio.Phylo module was introduced in Biopython 1.54. Following the lead of SeqIO and AlignIO, it aims
to provide a common way to work with phylogenetic trees independently of the source data format, as well
as a consistent API for I/O operations.

Bio.Phylo is described in an open-access journal article [9, Talevich et al., 2012], which you might also
find helpful.

13.1 Demo: What’s in a Tree?

To get acquainted with the module, let’s start with a tree that we’ve already constructed, and inspect it a
few different ways. Then we’ll colorize the branches, to use a special phyloXML feature, and finally save it.

Create a simple Newick file named simple.dnd using your favorite text editor, or use simple.dnd pro-
vided with the Biopython source code:

(((A,B),(C,D)),(E,F,G));

This tree has no branch lengths, only a topology and labelled terminals. (If you have a real tree file
available, you can follow this demo using that instead.)

Launch the Python interpreter of your choice:

$ ipython -pylab

For interactive work, launching the IPython interpreter with the -pylab flag enables matplotlib inte-
gration, so graphics will pop up automatically. We’ll use that during this demo.

Now, within Python, read the tree file, giving the file name and the name of the format.

>>> from Bio import Phylo

>>> tree = Phylo.read("simple.dnd", "newick")

Printing the tree object as a string gives us a look at the entire object hierarchy.

>>> print(tree)

Tree(rooted=False, weight=1.0)

Clade()

Clade()

Clade()

Clade(name=’A’)

Clade(name=’B’)

Clade()
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Clade(name=’C’)

Clade(name=’D’)

Clade()

Clade(name=’E’)

Clade(name=’F’)

Clade(name=’G’)

The Tree object contains global information about the tree, such as whether it’s rooted or unrooted. It
has one root clade, and under that, it’s nested lists of clades all the way down to the tips.

The function draw_ascii creates a simple ASCII-art (plain text) dendrogram. This is a convenient
visualization for interactive exploration, in case better graphical tools aren’t available.

>>> from Bio import Phylo

>>> tree = Phylo.read("simple.dnd", "newick")

>>> Phylo.draw_ascii(tree)

________________________ A

________________________|

| |________________________ B

________________________|

| | ________________________ C

| |________________________|

_| |________________________ D

|

| ________________________ E

| |

|________________________|________________________ F

|

|________________________ G

<BLANKLINE>

If you have matplotlib or pylab installed, you can create a graphic using the draw function (see Fig.
13.1):

>>> tree.rooted = True

>>> Phylo.draw(tree)

13.1.1 Coloring branches within a tree

The function draw supports the display of different colors and branch widths in a tree. As of Biopython 1.59,
the color and width attributes are available on the basic Clade object and there’s nothing extra required to
use them. Both attributes refer to the branch leading the given clade, and apply recursively, so all descendent
branches will also inherit the assigned width and color values during display.

In earlier versions of Biopython, these were special features of PhyloXML trees, and using the at-
tributes required first converting the tree to a subclass of the basic tree object called Phylogeny, from
the Bio.Phylo.PhyloXML module.

In Biopython 1.55 and later, this is a convenient tree method:

>>> tree = tree.as_phyloxml()

In Biopython 1.54, you can accomplish the same thing with one extra import:

>>> from Bio.Phylo.PhyloXML import Phylogeny

>>> tree = Phylogeny.from_tree(tree)

206



Figure 13.1: A rooted tree drawn with Phylo.draw.

Note that the file formats Newick and Nexus don’t support branch colors or widths, so if you use these
attributes in Bio.Phylo, you will only be able to save the values in PhyloXML format. (You can still save a
tree as Newick or Nexus, but the color and width values will be skipped in the output file.)

Now we can begin assigning colors. First, we’ll color the root clade gray. We can do that by assigning
the 24-bit color value as an RGB triple, an HTML-style hex string, or the name of one of the predefined
colors.

>>> tree.root.color = (128, 128, 128)

Or:

>>> tree.root.color = "#808080"

Or:

>>> tree.root.color = "gray"

Colors for a clade are treated as cascading down through the entire clade, so when we colorize the root
here, it turns the whole tree gray. We can override that by assigning a different color lower down on the tree.

Let’s target the most recent common ancestor (MRCA) of the nodes named “E” and “F”. The common_ancestor
method returns a reference to that clade in the original tree, so when we color that clade “salmon”, the color
will show up in the original tree.

>>> mrca = tree.common_ancestor({"name": "E"}, {"name": "F"})

>>> mrca.color = "salmon"

If we happened to know exactly where a certain clade is in the tree, in terms of nested list entries, we can
jump directly to that position in the tree by indexing it. Here, the index [0,1] refers to the second child of
the first child of the root.
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>>> tree.clade[0, 1].color = "blue"

Finally, show our work (see Fig. 13.2):

>>> Phylo.draw(tree)

Figure 13.2: A colorized tree drawn with Phylo.draw.

Note that a clade’s color includes the branch leading to that clade, as well as its descendents. The
common ancestor of E and F turns out to be just under the root, and with this coloring we can see exactly
where the root of the tree is.

My, we’ve accomplished a lot! Let’s take a break here and save our work. Call the write function with
a file name or handle — here we use standard output, to see what would be written — and the format
phyloxml. PhyloXML saves the colors we assigned, so you can open this phyloXML file in another tree
viewer like Archaeopteryx, and the colors will show up there, too.

>>> import sys

>>> Phylo.write(tree, sys.stdout, "phyloxml")

<phy:phyloxml xmlns:phy="http://www.phyloxml.org">

<phy:phylogeny rooted="true">

<phy:clade>

<phy:branch_length>1.0</phy:branch_length>

<phy:color>

<phy:red>128</phy:red>

<phy:green>128</phy:green>

<phy:blue>128</phy:blue>

</phy:color>

<phy:clade>
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<phy:branch_length>1.0</phy:branch_length>

<phy:clade>

<phy:branch_length>1.0</phy:branch_length>

<phy:clade>

<phy:name>A</phy:name>

...

The rest of this chapter covers the core functionality of Bio.Phylo in greater detail. For more examples
of using Bio.Phylo, see the cookbook page on Biopython.org:

http://biopython.org/wiki/Phylo_cookbook

13.2 I/O functions

Like SeqIO and AlignIO, Phylo handles file input and output through four functions: parse, read, write
and convert, all of which support the tree file formats Newick, NEXUS, phyloXML and NeXML, as well as
the Comparative Data Analysis Ontology (CDAO).

The read function parses a single tree in the given file and returns it. Careful; it will raise an error if the
file contains more than one tree, or no trees.

>>> from Bio import Phylo

>>> tree = Phylo.read("Tests/Nexus/int_node_labels.nwk", "newick")

>>> print(tree)

(Example files are available in the Tests/Nexus/ and Tests/PhyloXML/ directories of the Biopython
distribution.)

To handle multiple (or an unknown number of) trees, use the parse function iterates through each of
the trees in the given file:

>>> trees = Phylo.parse("../../Tests/PhyloXML/phyloxml_examples.xml", "phyloxml")

>>> for tree in trees:

... print(tree)

Write a tree or iterable of trees back to file with the write function:

>>> trees = list(Phylo.parse("../../Tests/PhyloXML/phyloxml_examples.xml", "phyloxml"))

>>> tree1 = trees[0]

>>> others = trees[1:]

>>> Phylo.write(tree1, "tree1.nwk", "newick")

1

>>> Phylo.write(others, "other_trees.nwk", "newick")

12

Convert files between any of the supported formats with the convert function:

>>> Phylo.convert("tree1.nwk", "newick", "tree1.xml", "nexml")

1

>>> Phylo.convert("other_trees.xml", "phyloxml", "other_trees.nex", "nexus")

12

To use strings as input or output instead of actual files, use StringIO as you would with SeqIO and
AlignIO:

>>> from Bio import Phylo

>>> from StringIO import StringIO

>>> handle = StringIO("(((A,B),(C,D)),(E,F,G));")

>>> tree = Phylo.read(handle, "newick")
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13.3 View and export trees

The simplest way to get an overview of a Tree object is to print it:

>>> from Bio import Phylo

>>> tree = Phylo.read("PhyloXML/example.xml", "phyloxml")

>>> print(tree)

Phylogeny(description=’phyloXML allows to use either a "branch_length" attribute...’, name=’example from Prof. Joe Felsenstein’s book "Inferring Phyl...’, rooted=True)

Clade()

Clade(branch_length=0.06)

Clade(branch_length=0.102, name=’A’)

Clade(branch_length=0.23, name=’B’)

Clade(branch_length=0.4, name=’C’)

This is essentially an outline of the object hierarchy Biopython uses to represent a tree. But more likely,
you’d want to see a drawing of the tree. There are three functions to do this.

As we saw in the demo, draw_ascii prints an ascii-art drawing of the tree (a rooted phylogram) to
standard output, or an open file handle if given. Not all of the available information about the tree is shown,
but it provides a way to quickly view the tree without relying on any external dependencies.

>>> tree = Phylo.read("example.xml", "phyloxml")

>>> Phylo.draw_ascii(tree)

__________________ A

__________|

_| |___________________________________________ B

|

|___________________________________________________________________________ C

The draw function draws a more attractive image using the matplotlib library. See the API documentation
for details on the arguments it accepts to customize the output.

>>> tree = Phylo.read("example.xml", "phyloxml")

>>> Phylo.draw(tree, branch_labels=lambda c: c.branch_length)

See the Phylo page on the Biopython wiki (http://biopython.org/wiki/Phylo) for descriptions and
examples of the more advanced functionality in draw_ascii, draw_graphviz and to_networkx.

13.4 Using Tree and Clade objects

The Tree objects produced by parse and read are containers for recursive sub-trees, attached to the Tree

object at the root attribute (whether or not the phylogenic tree is actually considered rooted). A Tree

has globally applied information for the phylogeny, such as rootedness, and a reference to a single Clade;
a Clade has node- and clade-specific information, such as branch length, and a list of its own descendent
Clade instances, attached at the clades attribute.

So there is a distinction between tree and tree.root. In practice, though, you rarely need to worry
about it. To smooth over the difference, both Tree and Clade inherit from TreeMixin, which contains the
implementations for methods that would be commonly used to search, inspect or modify a tree or any of its
clades. This means that almost all of the methods supported by tree are also available on tree.root and
any clade below it. (Clade also has a root property, which returns the clade object itself.)
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Figure 13.3: A simple rooted tree plotted with the draw function.

13.4.1 Search and traversal methods

For convenience, we provide a couple of simplified methods that return all external or internal nodes directly
as a list:

get terminals makes a list of all of this tree’s terminal (leaf) nodes.

get nonterminals makes a list of all of this tree’s nonterminal (internal) nodes.

These both wrap a method with full control over tree traversal, find_clades. Two more traversal
methods, find_elements and find_any, rely on the same core functionality and accept the same arguments,
which we’ll call a “target specification” for lack of a better description. These specify which objects in the
tree will be matched and returned during iteration. The first argument can be any of the following types:

• A TreeElement instance, which tree elements will match by identity — so searching with a Clade
instance as the target will find that clade in the tree;

• A string, which matches tree elements’ string representation — in particular, a clade’s name (added
in Biopython 1.56);

• A class or type, where every tree element of the same type (or sub-type) will be matched;

• A dictionary where keys are tree element attributes and values are matched to the corresponding
attribute of each tree element. This one gets even more elaborate:

– If an int is given, it matches numerically equal attributes, e.g. 1 will match 1 or 1.0

– If a boolean is given (True or False), the corresponding attribute value is evaluated as a boolean
and checked for the same

– None matches None

– If a string is given, the value is treated as a regular expression (which must match the whole string
in the corresponding element attribute, not just a prefix). A given string without special regex
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characters will match string attributes exactly, so if you don’t use regexes, don’t worry about it.
For example, in a tree with clade names Foo1, Foo2 and Foo3, tree.find_clades({"name": "Foo1"})

matches Foo1, {"name": "Foo.*"} matches all three clades, and {"name": "Foo"} doesn’t match
anything.

Since floating-point arithmetic can produce some strange behavior, we don’t support matching floats
directly. Instead, use the boolean True to match every element with a nonzero value in the specified
attribute, then filter on that attribute manually with an inequality (or exact number, if you like living
dangerously).

If the dictionary contains multiple entries, a matching element must match each of the given attribute
values — think “and”, not “or”.

• A function taking a single argument (it will be applied to each element in the tree), returning True
or False. For convenience, LookupError, AttributeError and ValueError are silenced, so this provides
another safe way to search for floating-point values in the tree, or some more complex characteristic.

After the target, there are two optional keyword arguments:

terminal — A boolean value to select for or against terminal clades (a.k.a. leaf nodes): True searches for
only terminal clades, False for non-terminal (internal) clades, and the default, None, searches both
terminal and non-terminal clades, as well as any tree elements lacking the is_terminal method.

order — Tree traversal order: "preorder" (default) is depth-first search, "postorder" is DFS with child
nodes preceding parents, and "level" is breadth-first search.

Finally, the methods accept arbitrary keyword arguments which are treated the same way as a dictio-
nary target specification: keys indicate the name of the element attribute to search for, and the argument
value (string, integer, None or boolean) is compared to the value of each attribute found. If no keyword
arguments are given, then any TreeElement types are matched. The code for this is generally shorter than
passing a dictionary as the target specification: tree.find_clades({"name": "Foo1"}) can be shortened
to tree.find_clades(name="Foo1").

(In Biopython 1.56 or later, this can be even shorter: tree.find_clades("Foo1"))
Now that we’ve mastered target specifications, here are the methods used to traverse a tree:

find clades Find each clade containing a matching element. That is, find each element as with find_elements,
but return the corresponding clade object. (This is usually what you want.)

The result is an iterable through all matching objects, searching depth-first by default. This is not
necessarily the same order as the elements appear in the Newick, Nexus or XML source file!

find elements Find all tree elements matching the given attributes, and return the matching elements them-
selves. Simple Newick trees don’t have complex sub-elements, so this behaves the same as find_clades
on them. PhyloXML trees often do have complex objects attached to clades, so this method is useful
for extracting those.

find any Return the first element found by find_elements(), or None. This is also useful for checking
whether any matching element exists in the tree, and can be used in a conditional.

Two more methods help navigating between nodes in the tree:

get path List the clades directly between the tree root (or current clade) and the given target. Returns a
list of all clade objects along this path, ending with the given target, but excluding the root clade.

trace List of all clade object between two targets in this tree. Excluding start, including finish.
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13.4.2 Information methods

These methods provide information about the whole tree (or any clade).

common ancestor Find the most recent common ancestor of all the given targets. (This will be a Clade
object). If no target is given, returns the root of the current clade (the one this method is called from);
if 1 target is given, this returns the target itself. However, if any of the specified targets are not found
in the current tree (or clade), an exception is raised.

count terminals Counts the number of terminal (leaf) nodes within the tree.

depths Create a mapping of tree clades to depths. The result is a dictionary where the keys are all of the
Clade instances in the tree, and the values are the distance from the root to each clade (including
terminals). By default the distance is the cumulative branch length leading to the clade, but with the
unit_branch_lengths=True option, only the number of branches (levels in the tree) is counted.

distance Calculate the sum of the branch lengths between two targets. If only one target is specified, the
other is the root of this tree.

total branch length Calculate the sum of all the branch lengths in this tree. This is usually just called
the “length” of the tree in phylogenetics, but we use a more explicit name to avoid confusion with
Python terminology.

The rest of these methods are boolean checks:

is bifurcating True if the tree is strictly bifurcating; i.e. all nodes have either 2 or 0 children (internal or
external, respectively). The root may have 3 descendents and still be considered part of a bifurcating
tree.

is monophyletic Test if all of the given targets comprise a complete subclade — i.e., there exists a clade
such that its terminals are the same set as the given targets. The targets should be terminals of the
tree. For convenience, this method returns the common ancestor (MCRA) of the targets if they are
monophyletic (instead of the value True), and False otherwise.

is parent of True if target is a descendent of this tree — not required to be a direct descendent. To check
direct descendents of a clade, simply use list membership testing: if subclade in clade: ...

is preterminal True if all direct descendents are terminal; False if any direct descendent is not terminal.

13.4.3 Modification methods

These methods modify the tree in-place. If you want to keep the original tree intact, make a complete copy
of the tree first, using Python’s copy module:

tree = Phylo.read("example.xml", "phyloxml")

import copy

newtree = copy.deepcopy(tree)

collapse Deletes the target from the tree, relinking its children to its parent.

collapse all Collapse all the descendents of this tree, leaving only terminals. Branch lengths are preserved,
i.e. the distance to each terminal stays the same. With a target specification (see above), collapses
only the internal nodes matching the specification.

ladderize Sort clades in-place according to the number of terminal nodes. Deepest clades are placed last
by default. Use reverse=True to sort clades deepest-to-shallowest.
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prune Prunes a terminal clade from the tree. If taxon is from a bifurcation, the connecting node will
be collapsed and its branch length added to remaining terminal node. This might no longer be a
meaningful value.

root with outgroup Reroot this tree with the outgroup clade containing the given targets, i.e. the common
ancestor of the outgroup. This method is only available on Tree objects, not Clades.

If the outgroup is identical to self.root, no change occurs. If the outgroup clade is terminal (e.g. a
single terminal node is given as the outgroup), a new bifurcating root clade is created with a 0-length
branch to the given outgroup. Otherwise, the internal node at the base of the outgroup becomes a
trifurcating root for the whole tree. If the original root was bifurcating, it is dropped from the tree.

In all cases, the total branch length of the tree stays the same.

root at midpoint Reroot this tree at the calculated midpoint between the two most distant tips of the tree.
(This uses root_with_outgroup under the hood.)

split Generate n (default 2) new descendants. In a species tree, this is a speciation event. New clades have
the given branch_length and the same name as this clade’s root plus an integer suffix (counting from
0) — for example, splitting a clade named “A” produces the sub-clades “A0” and “A1”.

See the Phylo page on the Biopython wiki (http://biopython.org/wiki/Phylo) for more examples of
using the available methods.

13.4.4 Features of PhyloXML trees

The phyloXML file format includes fields for annotating trees with additional data types and visual cues.
See the PhyloXML page on the Biopython wiki (http://biopython.org/wiki/PhyloXML) for descrip-

tions and examples of using the additional annotation features provided by PhyloXML.

13.5 Running external applications

While Bio.Phylo doesn’t infer trees from alignments itself, there are third-party programs available that do.
These are supported through the module Bio.Phylo.Applications, using the same general framework as
Bio.Emboss.Applications, Bio.Align.Applications and others.

Biopython 1.58 introduced a wrapper for PhyML (http://www.atgc-montpellier.fr/phyml/). The
program accepts an input alignment in phylip-relaxed format (that’s Phylip format, but without the
10-character limit on taxon names) and a variety of options. A quick example:

>>> from Bio import Phylo

>>> from Bio.Phylo.Applications import PhymlCommandline

>>> cmd = PhymlCommandline(input="Tests/Phylip/random.phy")

>>> out_log, err_log = cmd()

This generates a tree file and a stats file with the names [input filename]_phyml_tree.txt and [input file-
name]_phyml_stats.txt. The tree file is in Newick format:

>>> tree = Phylo.read("Tests/Phylip/random.phy_phyml_tree.txt", "newick")

>>> Phylo.draw_ascii(tree)

A similar wrapper for RAxML (https://sco.h-its.org/exelixis/software.html) was added in Biopy-
thon 1.60, and FastTree (http://www.microbesonline.org/fasttree/) in Biopython 1.62.

Note that some popular Phylip programs, including dnaml and protml, are already available through the
EMBOSS wrappers in Bio.Emboss.Applications if you have the Phylip extensions to EMBOSS installed
on your system. See Section 6.4 for some examples and clues on how to use programs like these.
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13.6 PAML integration

Biopython 1.58 brought support for PAML (http://abacus.gene.ucl.ac.uk/software/paml.html), a
suite of programs for phylogenetic analysis by maximum likelihood. Currently the programs codeml, baseml
and yn00 are implemented. Due to PAML’s usage of control files rather than command line arguments
to control runtime options, usage of this wrapper strays from the format of other application wrappers in
Biopython.

A typical workflow would be to initialize a PAML object, specifying an alignment file, a tree file, an
output file and a working directory. Next, runtime options are set via the set options() method or by
reading an existing control file. Finally, the program is run via the run() method and the output file is
automatically parsed to a results dictionary.

Here is an example of typical usage of codeml:

>>> from Bio.Phylo.PAML import codeml

>>> cml = codeml.Codeml()

>>> cml.alignment = "Tests/PAML/alignment.phylip"

>>> cml.tree = "Tests/PAML/species.tree"

>>> cml.out_file = "results.out"

>>> cml.working_dir = "./scratch"

>>> cml.set_options(seqtype=1,

... verbose=0,

... noisy=0,

... RateAncestor=0,

... model=0,

... NSsites=[0, 1, 2],

... CodonFreq=2,

... cleandata=1,

... fix_alpha=1,

... kappa=4.54006)

>>> results = cml.run()

>>> ns_sites = results.get("NSsites")

>>> m0 = ns_sites.get(0)

>>> m0_params = m0.get("parameters")

>>> print(m0_params.get("omega"))

Existing output files may be parsed as well using a module’s read() function:

>>> results = codeml.read("Tests/PAML/Results/codeml/codeml_NSsites_all.out")

>>> print(results.get("lnL max"))

Detailed documentation for this new module currently lives on the Biopython wiki: http://biopython.
org/wiki/PAML

13.7 Future plans

Bio.Phylo is under active development. Here are some features we might add in future releases:

New methods Generally useful functions for operating on Tree or Clade objects appear on the Biopython
wiki first, so that casual users can test them and decide if they’re useful before we add them to
Bio.Phylo:

http://biopython.org/wiki/Phylo_cookbook
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Bio.Nexus port Much of this module was written during Google Summer of Code 2009, under the auspices
of NESCent, as a project to implement Python support for the phyloXML data format (see 13.4.4).
Support for Newick and Nexus formats was added by porting part of the existing Bio.Nexus module
to the new classes used by Bio.Phylo.

Currently, Bio.Nexus contains some useful features that have not yet been ported to Bio.Phylo classes
— notably, calculating a consensus tree. If you find some functionality lacking in Bio.Phylo, try poking
throught Bio.Nexus to see if it’s there instead.

We’re open to any suggestions for improving the functionality and usability of this module; just let us
know on the mailing list or our bug database.

Finally, if you need additional functionality not yet included in the Phylo module, check if it’s available
in another of the high-quality Python libraries for phylogenetics such as DendroPy (https://dendropy.
org/) or PyCogent (http://pycogent.org/). Since these libraries also support standard file formats for
phylogenetic trees, you can easily transfer data between libraries by writing to a temporary file or StringIO
object.
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Chapter 14

Sequence motif analysis using
Bio.motifs

This chapter gives an overview of the functionality of the Bio.motifs package included in Biopython. It is
intended for people who are involved in the analysis of sequence motifs, so I’ll assume that you are familiar
with basic notions of motif analysis. In case something is unclear, please look at Section 14.10 for some
relevant links.

Most of this chapter describes the new Bio.motifs package included in Biopython 1.61 onwards, which
is replacing the older Bio.Motif package introduced with Biopython 1.50, which was in turn based on two
older former Biopython modules, Bio.AlignAce and Bio.MEME. It provides most of their functionality with
a unified motif object implementation.

Speaking of other libraries, if you are reading this you might be interested in TAMO, another python
library designed to deal with sequence motifs. It supports more de-novo motif finders, but it is not a part
of Biopython and has some restrictions on commercial use.

14.1 Motif objects

Since we are interested in motif analysis, we need to take a look at Motif objects in the first place. For that
we need to import the Bio.motifs library:

>>> from Bio import motifs

and we can start creating our first motif objects. We can either create a Motif object from a list of
instances of the motif, or we can obtain a Motif object by parsing a file from a motif database or motif
finding software.

14.1.1 Creating a motif from instances

Suppose we have these instances of a DNA motif:

>>> from Bio.Seq import Seq

>>> instances = [Seq("TACAA"),

... Seq("TACGC"),

... Seq("TACAC"),

... Seq("TACCC"),

... Seq("AACCC"),

... Seq("AATGC"),
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... Seq("AATGC"),

... ]

then we can create a Motif object as follows:

>>> m = motifs.create(instances)

The instances are saved in an attribute m.instances, which is essentially a Python list with some added
functionality, as described below. Printing out the Motif object shows the instances from which it was
constructed:

>>> print(m)

TACAA

TACGC

TACAC

TACCC

AACCC

AATGC

AATGC

<BLANKLINE>

The length of the motif is defined as the sequence length, which should be the same for all instances:

>>> len(m)

5

The Motif object has an attribute .counts containing the counts of each nucleotide at each position. Printing
this counts matrix shows it in an easily readable format:

>>> print(m.counts)

0 1 2 3 4

A: 3.00 7.00 0.00 2.00 1.00

C: 0.00 0.00 5.00 2.00 6.00

G: 0.00 0.00 0.00 3.00 0.00

T: 4.00 0.00 2.00 0.00 0.00

<BLANKLINE>

You can access these counts as a dictionary:

>>> m.counts["A"]

[3, 7, 0, 2, 1]

but you can also think of it as a 2D array with the nucleotide as the first dimension and the position as the
second dimension:

>>> m.counts["T", 0]

4

>>> m.counts["T", 2]

2

>>> m.counts["T", 3]

0

You can also directly access columns of the counts matrix
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>>> m.counts[:, 3]

{’A’: 2, ’C’: 2, ’T’: 0, ’G’: 3}

Instead of the nucleotide itself, you can also use the index of the nucleotide in the alphabet of the motif:

>>> m.alphabet

’ACGT’

>>> m.counts["A",:]

(3, 7, 0, 2, 1)

>>> m.counts[0,:]

(3, 7, 0, 2, 1)

The motif has an associated consensus sequence, defined as the sequence of letters along the positions of the
motif for which the largest value in the corresponding columns of the .counts matrix is obtained:

>>> m.consensus

Seq(’TACGC’)

as well as an anticonsensus sequence, corresponding to the smallest values in the columns of the .counts

matrix:

>>> m.anticonsensus

Seq(’CCATG’)

Note that there is some ambiguity in the definition of the consensus and anticonsensus sequence if in some
columns multiple nucleotides have the maximum or minimum count.

You can also ask for a degenerate consensus sequence, in which ambiguous nucleotides are used for
positions where there are multiple nucleotides with high counts:

>>> m.degenerate_consensus

Seq(’WACVC’)

Here, W and R follow the IUPAC nucleotide ambiguity codes: W is either A or T, and V is A, C, or G [10].
The degenerate consensus sequence is constructed following the rules specified by Cavener [11].

We can also get the reverse complement of a motif:

>>> r = m.reverse_complement()

>>> r.consensus

Seq(’GCGTA’)

>>> r.degenerate_consensus

Seq(’GBGTW’)

>>> print(r)

TTGTA

GCGTA

GTGTA

GGGTA

GGGTT

GCATT

GCATT

<BLANKLINE>

The reverse complement and the degenerate consensus sequence are only defined for DNA motifs.
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14.1.2 Creating a sequence logo

If we have internet access, we can create a weblogo:

>>> m.weblogo("mymotif.png")

We should get our logo saved as a PNG in the specified file.

14.2 Reading motifs

Creating motifs from instances by hand is a bit boring, so it’s useful to have some I/O functions for reading
and writing motifs. There are not any really well established standards for storing motifs, but there are a
couple of formats that are more used than others.

14.2.1 JASPAR

One of the most popular motif databases is JASPAR. In addition to the motif sequence information, the
JASPAR database stores a lot of meta-information for each motif. The module Bio.motifs contains a
specialized class jaspar.Motif in which this meta-information is represented as attributes:

• matrix_id - the unique JASPAR motif ID, e.g. ’MA0004.1’

• name - the name of the TF, e.g. ’Arnt’

• collection - the JASPAR collection to which the motif belongs, e.g. ’CORE’

• tf_class - the structual class of this TF, e.g. ’Zipper-Type’

• tf_family - the family to which this TF belongs, e.g. ’Helix-Loop-Helix’

• species - the species to which this TF belongs, may have multiple values, these are specified as
taxonomy IDs, e.g. 10090

• tax_group - the taxonomic supergroup to which this motif belongs, e.g. ’vertebrates’

• acc - the accession number of the TF protein, e.g. ’P53762’

• data_type - the type of data used to construct this motif, e.g. ’SELEX’

• medline - the Pubmed ID of literature supporting this motif, may be multiple values, e.g. 7592839

• pazar_id - external reference to the TF in the PAZAR database, e.g. ’TF0000003’

• comment - free form text containing notes about the construction of the motif

The jaspar.Motif class inherits from the generic Motif class and therefore provides all the facilities of
any of the motif formats — reading motifs, writing motifs, scanning sequences for motif instances etc.

JASPAR stores motifs in several different ways including three different flat file formats and as an SQL
database. All of these formats facilitate the construction of a counts matrix. However, the amount of meta
information described above that is available varies with the format.
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The JASPAR sites format

The first of the three flat file formats contains a list of instances. As an example, these are the beginning
and ending lines of the JASPAR Arnt.sites file showing known binding sites of the mouse helix-loop-helix
transcription factor Arnt.

>MA0004 ARNT 1

CACGTGatgtcctc

>MA0004 ARNT 2

CACGTGggaggtac

>MA0004 ARNT 3

CACGTGccgcgcgc

...

>MA0004 ARNT 18

AACGTGacagccctcc

>MA0004 ARNT 19

AACGTGcacatcgtcc

>MA0004 ARNT 20

aggaatCGCGTGc

The parts of the sequence in capital letters are the motif instances that were found to align to each other.
We can create a Motif object from these instances as follows:

>>> from Bio import motifs

>>> with open("Arnt.sites") as handle:

... arnt = motifs.read(handle, "sites")

...

The instances from which this motif was created is stored in the .instances property:

>>> print(arnt.instances[:3])

[Seq(’CACGTG’), Seq(’CACGTG’), Seq(’CACGTG’)]

>>> for instance in arnt.instances:

... print(instance)

...

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

CACGTG

AACGTG

AACGTG

AACGTG

AACGTG

CGCGTG
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The counts matrix of this motif is automatically calculated from the instances:

>>> print(arnt.counts)

0 1 2 3 4 5

A: 4.00 19.00 0.00 0.00 0.00 0.00

C: 16.00 0.00 20.00 0.00 0.00 0.00

G: 0.00 1.00 0.00 20.00 0.00 20.00

T: 0.00 0.00 0.00 0.00 20.00 0.00

<BLANKLINE>

This format does not store any meta information.

The JASPAR pfm format

JASPAR also makes motifs available directly as a count matrix, without the instances from which it was
created. This pfm format only stores the counts matrix for a single motif. For example, this is the JASPAR
file SRF.pfm containing the counts matrix for the human SRF transcription factor:

2 9 0 1 32 3 46 1 43 15 2 2

1 33 45 45 1 1 0 0 0 1 0 1

39 2 1 0 0 0 0 0 0 0 44 43

4 2 0 0 13 42 0 45 3 30 0 0

We can create a motif for this count matrix as follows:

>>> with open("SRF.pfm") as handle:

... srf = motifs.read(handle, "pfm")

...

>>> print(srf.counts)

0 1 2 3 4 5 6 7 8 9 10 11

A: 2.00 9.00 0.00 1.00 32.00 3.00 46.00 1.00 43.00 15.00 2.00 2.00

C: 1.00 33.00 45.00 45.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00

G: 39.00 2.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.00 43.00

T: 4.00 2.00 0.00 0.00 13.00 42.00 0.00 45.00 3.00 30.00 0.00 0.00

<BLANKLINE>

As this motif was created from the counts matrix directly, it has no instances associated with it:

>>> print(srf.instances)

None

We can now ask for the consensus sequence of these two motifs:

>>> print(arnt.counts.consensus)

CACGTG

>>> print(srf.counts.consensus)

GCCCATATATGG

As with the instances file, no meta information is stored in this format.
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The JASPAR format jaspar

The jaspar file format allows multiple motifs to be specified in a single file. In this format each of the motif
records consist of a header line followed by four lines defining the counts matrix. The header line begins with
a > character (similar to the Fasta file format) and is followed by the unique JASPAR matrix ID and the
TF name. The following example shows a jaspar formatted file containing the three motifs Arnt, RUNX1
and MEF2A:

>MA0004.1 Arnt

A [ 4 19 0 0 0 0 ]

C [16 0 20 0 0 0 ]

G [ 0 1 0 20 0 20 ]

T [ 0 0 0 0 20 0 ]

>MA0002.1 RUNX1

A [10 12 4 1 2 2 0 0 0 8 13 ]

C [ 2 2 7 1 0 8 0 0 1 2 2 ]

G [ 3 1 1 0 23 0 26 26 0 0 4 ]

T [11 11 14 24 1 16 0 0 25 16 7 ]

>MA0052.1 MEF2A

A [ 1 0 57 2 9 6 37 2 56 6 ]

C [50 0 1 1 0 0 0 0 0 0 ]

G [ 0 0 0 0 0 0 0 0 2 50 ]

T [ 7 58 0 55 49 52 21 56 0 2 ]

The motifs are read as follows:

>>> fh = open("jaspar_motifs.txt")

>>> for m in motifs.parse(fh, "jaspar"))

... print(m)

TF name Arnt

Matrix ID MA0004.1

Matrix:

0 1 2 3 4 5

A: 4.00 19.00 0.00 0.00 0.00 0.00

C: 16.00 0.00 20.00 0.00 0.00 0.00

G: 0.00 1.00 0.00 20.00 0.00 20.00

T: 0.00 0.00 0.00 0.00 20.00 0.00

TF name RUNX1

Matrix ID MA0002.1

Matrix:

0 1 2 3 4 5 6 7 8 9 10

A: 10.00 12.00 4.00 1.00 2.00 2.00 0.00 0.00 0.00 8.00 13.00

C: 2.00 2.00 7.00 1.00 0.00 8.00 0.00 0.00 1.00 2.00 2.00

G: 3.00 1.00 1.00 0.00 23.00 0.00 26.00 26.00 0.00 0.00 4.00

T: 11.00 11.00 14.00 24.00 1.00 16.00 0.00 0.00 25.00 16.00 7.00

TF name MEF2A

Matrix ID MA0052.1
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Matrix:

0 1 2 3 4 5 6 7 8 9

A: 1.00 0.00 57.00 2.00 9.00 6.00 37.00 2.00 56.00 6.00

C: 50.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

G: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 50.00

T: 7.00 58.00 0.00 55.00 49.00 52.00 21.00 56.00 0.00 2.00

Note that printing a JASPAR motif yields both the counts data and the available meta-information.

Accessing the JASPAR database

In addition to parsing these flat file formats, we can also retrieve motifs from a JASPAR SQL database.
Unlike the flat file formats, a JASPAR database allows storing of all possible meta information defined in
the JASPAR Motif class. It is beyond the scope of this document to describe how to set up a JASPAR
database (please see the main JASPAR website). Motifs are read from a JASPAR database using the
Bio.motifs.jaspar.db module. First connect to the JASPAR database using the JASPAR5 class which
models the the latest JASPAR schema:

>>> from Bio.motifs.jaspar.db import JASPAR5

>>>

>>> JASPAR_DB_HOST = <hostname>

>>> JASPAR_DB_NAME = <db_name>

>>> JASPAR_DB_USER = <user>

>>> JASPAR_DB_PASS = <passord>

>>>

>>> jdb = JASPAR5(

... host=JASPAR_DB_HOST,

... name=JASPAR_DB_NAME,

... user=JASPAR_DB_USER,

... password=JASPAR_DB_PASS

... )

Now we can fetch a single motif by its unique JASPAR ID with the fetch_motif_by_id method. Note
that a JASPAR ID conists of a base ID and a version number seperated by a decimal point, e.g. ’MA0004.1’.
The fetch_motif_by_id method allows you to use either the fully specified ID or just the base ID. If only
the base ID is provided, the latest version of the motif is returned.

>>> arnt = jdb.fetch_motif_by_id("MA0004")

Printing the motif reveals that the JASPAR SQL database stores much more meta-information than the flat
files:

>>> print(arnt)

TF name Arnt

Matrix ID MA0004.1

Collection CORE

TF class Zipper-Type

TF family Helix-Loop-Helix

Species 10090

Taxonomic group vertebrates

Accession [’P53762’]

Data type used SELEX

Medline 7592839

PAZAR ID TF0000003
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Comments -

Matrix:

0 1 2 3 4 5

A: 4.00 19.00 0.00 0.00 0.00 0.00

C: 16.00 0.00 20.00 0.00 0.00 0.00

G: 0.00 1.00 0.00 20.00 0.00 20.00

T: 0.00 0.00 0.00 0.00 20.00 0.00

We can also fetch motifs by name. The name must be an exact match (partial matches or database
wildcards are not currently supported). Note that as the name is not guaranteed to be unique, the
fetch_motifs_by_name method actually returns a list.

>>> motifs = jdb.fetch_motifs_by_name("Arnt")

>>> print(motifs[0])

TF name Arnt

Matrix ID MA0004.1

Collection CORE

TF class Zipper-Type

TF family Helix-Loop-Helix

Species 10090

Taxonomic group vertebrates

Accession [’P53762’]

Data type used SELEX

Medline 7592839

PAZAR ID TF0000003

Comments -

Matrix:

0 1 2 3 4 5

A: 4.00 19.00 0.00 0.00 0.00 0.00

C: 16.00 0.00 20.00 0.00 0.00 0.00

G: 0.00 1.00 0.00 20.00 0.00 20.00

T: 0.00 0.00 0.00 0.00 20.00 0.00

The fetch_motifs method allows you to fetch motifs which match a specified set of criteria. These
criteria include any of the above described meta information as well as certain matrix properties such as
the minimum information content (min_ic in the example below), the minimum length of the matrix or the
minimum number of sites used to construct the matrix. Only motifs which pass ALL the specified criteria
are returned. Note that selection criteria which correspond to meta information which allow for multiple
values may be specified as either a single value or a list of values, e.g. tax_group and tf_family in the
example below.

>>> motifs = jdb.fetch_motifs(

... collection = "CORE",

... tax_group = ["vertebrates", "insects"],

... tf_class = "Winged Helix-Turn-Helix",

... tf_family = ["Forkhead", "Ets"],

... min_ic = 12

... )

>>> for motif in motifs:

... pass # do something with the motif
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Compatibility with Perl TFBS modules

An important thing to note is that the JASPAR Motif class was designed to be compatible with the
popular Perl TFBS modules. Therefore some specifics about the choice of defaults for background and
pseudocounts as well as how information content is computed and sequences searched for instances is based
on this compatibility criteria. These choices are noted in the specific subsections below.

• Choice of background:
The Perl TFBS modules appear to allow a choice of custom background probabilities (although the
documentation states that uniform background is assumed). However the default is to use a uniform
background. Therefore it is recommended that you use a uniform background for computing the
position-specific scoring matrix (PSSM). This is the default when using the Biopython motifs module.

• Choice of pseudocounts:
By default, the Perl TFBS modules use a pseudocount equal to

√
N ∗bg[nucleotide], where N represents

the total number of sequences used to construct the matrix. To apply this same pseudocount formula,
set the motif pseudocounts attribute using the jaspar.calculate\_pseudcounts() function:

>>> motif.pseudocounts = motifs.jaspar.calculate_pseudocounts(motif)

Note that it is possible for the counts matrix to have an unequal number of sequences making up the
columns. The pseudocount computation uses the average number of sequences making up the matrix.
However, when normalize is called on the counts matrix, each count value in a column is divided by
the total number of sequences making up that specific column, not by the average number of sequences.
This differs from the Perl TFBS modules because the normalization is not done as a separate step and
so the average number of sequences is used throughout the computation of the pssm. Therefore, for
matrices with unequal column counts, the PSSM computed by the motifs module will differ somewhat
from the pssm computed by the Perl TFBS modules.

• Computation of matrix information content:
The information content (IC) or specificity of a matrix is computed using the mean method of the
PositionSpecificScoringMatrix class. However of note, in the Perl TFBS modules the default be-
haviour is to compute the IC without first applying pseudocounts, even though by default the PSSMs
are computed using pseudocounts as described above.

• Searching for instances:
Searching for instances with the Perl TFBS motifs was usually performed using a relative score threshold,
i.e. a score in the range 0 to 1. In order to compute the absolute PSSM score corresponding to a relative
score one can use the equation:

>>> abs_score = (pssm.max - pssm.min) * rel_score + pssm.min

To convert the absolute score of an instance back to a relative score, one can use the equation:

>>> rel_score = (abs_score - pssm.min) / (pssm.max - pssm.min)

For example, using the Arnt motif before, let’s search a sequence with a relative score threshold of 0.8.

>>> test_seq=Seq("TAAGCGTGCACGCGCAACACGTGCATTA")

>>> arnt.pseudocounts = motifs.jaspar.calculate_pseudocounts(arnt)

>>> pssm = arnt.pssm

>>> max_score = pssm.max

>>> min_score = pssm.min

>>> abs_score_threshold = (max_score - min_score) * 0.8 + min_score

>>> for position, score in pssm.search(test_seq,

threshold=abs_score_threshold):
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... rel_score = (score - min_score) / (max_score - min_score)

... print("Position %d: score = %5.3f, rel. score = %5.3f" % (

position, score, rel_score))

...

Position 2: score = 5.362, rel. score = 0.801

Position 8: score = 6.112, rel. score = 0.831

Position -20: score = 7.103, rel. score = 0.870

Position 17: score = 10.351, rel. score = 1.000

Position -11: score = 10.351, rel. score = 1.000

14.2.2 MEME

MEME [12] is a tool for discovering motifs in a group of related DNA or protein sequences. It takes as input
a group of DNA or protein sequences and outputs as many motifs as requested. Therefore, in contrast to
JASPAR files, MEME output files typically contain multiple motifs. This is an example.

At the top of an output file generated by MEME shows some background information about the MEME
and the version of MEME used:

********************************************************************************

MEME - Motif discovery tool

********************************************************************************

MEME version 3.0 (Release date: 2004/08/18 09:07:01)

...

Further down, the input set of training sequences is recapitulated:

********************************************************************************

TRAINING SET

********************************************************************************

DATAFILE= INO_up800.s

ALPHABET= ACGT

Sequence name Weight Length Sequence name Weight Length

------------- ------ ------ ------------- ------ ------

CHO1 1.0000 800 CHO2 1.0000 800

FAS1 1.0000 800 FAS2 1.0000 800

ACC1 1.0000 800 INO1 1.0000 800

OPI3 1.0000 800

********************************************************************************

and the exact command line that was used:

********************************************************************************

COMMAND LINE SUMMARY

********************************************************************************

This information can also be useful in the event you wish to report a

problem with the MEME software.

command: meme -mod oops -dna -revcomp -nmotifs 2 -bfile yeast.nc.6.freq INO_up800.s

...

Next is detailed information on each motif that was found:

********************************************************************************

MOTIF 1 width = 12 sites = 7 llr = 95 E-value = 2.0e-001
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********************************************************************************

--------------------------------------------------------------------------------

Motif 1 Description

--------------------------------------------------------------------------------

Simplified A :::9:a::::3:

pos.-specific C ::a:9:11691a

probability G ::::1::94:4:

matrix T aa:1::9::11:

To parse this file (stored as meme.dna.oops.txt), use

>>> with open("meme.dna.oops.txt") as handle:

... record = motifs.parse(handle, "meme")

...

The motifs.parse command reads the complete file directly, so you can close the file after calling motifs.parse.
The header information is stored in attributes:

>>> record.version

’3.0’

>>> record.datafile

’INO_up800.s’

>>> record.command

’meme -mod oops -dna -revcomp -nmotifs 2 -bfile yeast.nc.6.freq INO_up800.s’

>>> record.alphabet

’ACGT’

>>> record.sequences

[’CHO1’, ’CHO2’, ’FAS1’, ’FAS2’, ’ACC1’, ’INO1’, ’OPI3’]

The record is an object of the Bio.motifs.meme.Record class. The class inherits from list, and you can
think of record as a list of Motif objects:

>>> len(record)

2

>>> motif = record[0]

>>> print(motif.consensus)

TTCACATGCCGC

>>> print(motif.degenerate_consensus)

TTCACATGSCNC

In addition to these generic motif attributes, each motif also stores its specific information as calculated by
MEME. For example,

>>> motif.num_occurrences

7

>>> motif.length

12

>>> evalue = motif.evalue

>>> print("%3.1g" % evalue)

0.2

>>> motif.name

’Motif 1’

In addition to using an index into the record, as we did above, you can also find it by its name:
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>>> motif = record["Motif 1"]

Each motif has an attribute .instances with the sequence instances in which the motif was found, providing
some information on each instance:

>>> len(motif.instances)

7

>>> motif.instances[0]

Instance(’TTCACATGCCGC’, ’ACGT’)

>>> motif.instances[0].motif_name

’Motif 1’

>>> motif.instances[0].sequence_name

’INO1’

>>> motif.instances[0].start

620

>>> motif.instances[0].strand

’-’

>>> motif.instances[0].length

12

>>> pvalue = motif.instances[0].pvalue

>>> print("%5.3g" % pvalue)

1.85e-08

MAST

14.2.3 TRANSFAC

TRANSFAC is a manually curated database of transcription factors, together with their genomic binding
sites and DNA binding profiles [33]. While the file format used in the TRANSFAC database is nowadays
also used by others, we will refer to it as the TRANSFAC file format.

A minimal file in the TRANSFAC format looks as follows:

ID motif1

P0 A C G T

01 1 2 2 0 S

02 2 1 2 0 R

03 3 0 1 1 A

04 0 5 0 0 C

05 5 0 0 0 A

06 0 0 4 1 G

07 0 1 4 0 G

08 0 0 0 5 T

09 0 0 5 0 G

10 0 1 2 2 K

11 0 2 0 3 Y

12 1 0 3 1 G

//

This file shows the frequency matrix of motif motif1 of 12 nucleotides. In general, one file in the TRANSFAC
format can contain multiple motifs. For example, this is the contents of the example TRANSFAC file
transfac.dat:

VV EXAMPLE January 15, 2013

XX
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//

ID motif1

P0 A C G T

01 1 2 2 0 S

02 2 1 2 0 R

03 3 0 1 1 A

...

11 0 2 0 3 Y

12 1 0 3 1 G

//

ID motif2

P0 A C G T

01 2 1 2 0 R

02 1 2 2 0 S

...

09 0 0 0 5 T

10 0 2 0 3 Y

//

To parse a TRANSFAC file, use

>>> with open("transfac.dat") as handle:

... record = motifs.parse(handle, "TRANSFAC")

...

If any discrepancies between the file contents and the TRANSFAC file format are detected, a ValueError is
raised. Note that you may encounter files that do not follow the TRANSFAC format strictly. For example,
the number of spaces between columns may be different, or a tab may be used instead of spaces. Use
strict=False to enable parsing such files without raising a ValueError:

>>> record = motifs.parse(handle, "TRANSFAC", strict=False)

When parsing a non-compliant file, we recommend to check the record returned by motif.parse to ensure
that it is consistent with the file contents.

The overall version number, if available, is stored as record.version:

>>> record.version

’EXAMPLE January 15, 2013’

Each motif in record is in instance of the Bio.motifs.transfac.Motif class, which inherits both from
the Bio.motifs.Motif class and from a Python dictionary. The dictionary uses the two-letter keys to store
any additional information about the motif:

>>> motif = record[0]

>>> motif.degenerate_consensus # Using the Bio.motifs.Motif method

Seq(’SRACAGGTGKYG’)

>>> motif["ID"] # Using motif as a dictionary

’motif1’

TRANSFAC files are typically much more elaborate than this example, containing lots of additional
information about the motif. Table 14.2.3 lists the two-letter field codes that are commonly found in
TRANSFAC files:

Each motif also has an attribute .references containing the references associated with the motif, using
these two-letter keys:

Printing the motifs writes them out in their native TRANSFAC format:
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Table 14.1: Fields commonly found in TRANSFAC files
AC Accession number
AS Accession numbers, secondary
BA Statistical basis
BF Binding factors
BS Factor binding sites underlying the matrix
CC Comments
CO Copyright notice
DE Short factor description
DR External databases
DT Date created/updated
HC Subfamilies
HP Superfamilies
ID Identifier
NA Name of the binding factor
OC Taxonomic classification
OS Species/Taxon
OV Older version
PV Preferred version
TY Type
XX Empty line; these are not stored in the Record.

Table 14.2: Fields used to store references in TRANSFAC files
RN Reference number
RA Reference authors
RL Reference data
RT Reference title
RX PubMed ID

>>> print(record)

VV EXAMPLE January 15, 2013

XX

//

ID motif1

XX

P0 A C G T

01 1 2 2 0 S

02 2 1 2 0 R

03 3 0 1 1 A

04 0 5 0 0 C

05 5 0 0 0 A

06 0 0 4 1 G

07 0 1 4 0 G

08 0 0 0 5 T

09 0 0 5 0 G

10 0 1 2 2 K

11 0 2 0 3 Y

12 1 0 3 1 G
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XX

//

ID motif2

XX

P0 A C G T

01 2 1 2 0 R

02 1 2 2 0 S

03 0 5 0 0 C

04 3 0 1 1 A

05 0 0 4 1 G

06 5 0 0 0 A

07 0 1 4 0 G

08 0 0 5 0 G

09 0 0 0 5 T

10 0 2 0 3 Y

XX

//

<BLANKLINE>

You can export the motifs in the TRANSFAC format by capturing this output in a string and saving it in
a file:

>>> text = str(record)

>>> with open("mytransfacfile.dat", "w") as out_handle:

... out_handle.write(text)

...

14.3 Writing motifs

Speaking of exporting, let’s look at export functions in general. We can use the format method to write the
motif in the simple JASPAR pfm format:

>>> print(arnt.format("pfm"))

4.00 19.00 0.00 0.00 0.00 0.00

16.00 0.00 20.00 0.00 0.00 0.00

0.00 1.00 0.00 20.00 0.00 20.00

0.00 0.00 0.00 0.00 20.00 0.00

Similarly, we can use format to write the motif in the JASPAR jaspar format:

>>> print(arnt.format("jaspar"))

>MA0004.1 Arnt

A [ 4.00 19.00 0.00 0.00 0.00 0.00]

C [ 16.00 0.00 20.00 0.00 0.00 0.00]

G [ 0.00 1.00 0.00 20.00 0.00 20.00]

T [ 0.00 0.00 0.00 0.00 20.00 0.00]

To write the motif in a TRANSFAC-like matrix format, use

>>> print(m.format("transfac"))

P0 A C G T

01 3 0 0 4 W

02 7 0 0 0 A
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03 0 5 0 2 C

04 2 2 3 0 V

05 1 6 0 0 C

XX

//

<BLANKLINE>

To write out multiple motifs, you can use motifs.write. This function can be used regardless of whether
the motifs originated from a TRANSFAC file. For example,

>>> two_motifs = [arnt, srf]

>>> print(motifs.write(two_motifs, "transfac"))

P0 A C G T

01 4 16 0 0 C

02 19 0 1 0 A

03 0 20 0 0 C

04 0 0 20 0 G

05 0 0 0 20 T

06 0 0 20 0 G

XX

//

P0 A C G T

01 2 1 39 4 G

02 9 33 2 2 C

03 0 45 1 0 C

04 1 45 0 0 C

05 32 1 0 13 A

06 3 1 0 42 T

07 46 0 0 0 A

08 1 0 0 45 T

09 43 0 0 3 A

10 15 1 0 30 W

11 2 0 44 0 G

12 2 1 43 0 G

XX

//

<BLANKLINE>

Or, to write multiple motifs in the jaspar format:

>>> two_motifs = [arnt, mef2a]

>>> print(motifs.write(two_motifs, "jaspar"))

>MA0004.1 Arnt

A [ 4.00 19.00 0.00 0.00 0.00 0.00]

C [ 16.00 0.00 20.00 0.00 0.00 0.00]

G [ 0.00 1.00 0.00 20.00 0.00 20.00]

T [ 0.00 0.00 0.00 0.00 20.00 0.00]

>MA0052.1 MEF2A

A [ 1.00 0.00 57.00 2.00 9.00 6.00 37.00 2.00 56.00 6.00]

C [ 50.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00]

G [ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 50.00]

T [ 7.00 58.00 0.00 55.00 49.00 52.00 21.00 56.00 0.00 2.00]
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14.4 Position-Weight Matrices

The .counts attribute of a Motif object shows how often each nucleotide appeared at each position along the
alignment. We can normalize this matrix by dividing by the number of instances in the alignment, resulting
in the probability of each nucleotide at each position along the alignment. We refer to these probabilities as
the position-weight matrix. However, beware that in the literature this term may also be used to refer to
the position-specific scoring matrix, which we discuss below.

Usually, pseudocounts are added to each position before normalizing. This avoids overfitting of the
position-weight matrix to the limited number of motif instances in the alignment, and can also prevent
probabilities from becoming zero. To add a fixed pseudocount to all nucleotides at all positions, specify a
number for the pseudocounts argument:

>>> pwm = m.counts.normalize(pseudocounts=0.5)

>>> print(pwm)

0 1 2 3 4

A: 0.39 0.83 0.06 0.28 0.17

C: 0.06 0.06 0.61 0.28 0.72

G: 0.06 0.06 0.06 0.39 0.06

T: 0.50 0.06 0.28 0.06 0.06

<BLANKLINE>

Alternatively, pseudocounts can be a dictionary specifying the pseudocounts for each nucleotide. For ex-
ample, as the GC content of the human genome is about 40%, you may want to choose the pseudocounts
accordingly:

>>> pwm = m.counts.normalize(pseudocounts={"A":0.6, "C": 0.4, "G": 0.4, "T": 0.6})

>>> print(pwm)

0 1 2 3 4

A: 0.40 0.84 0.07 0.29 0.18

C: 0.04 0.04 0.60 0.27 0.71

G: 0.04 0.04 0.04 0.38 0.04

T: 0.51 0.07 0.29 0.07 0.07

<BLANKLINE>

The position-weight matrix has its own methods to calculate the consensus, anticonsensus, and degenerate
consensus sequences:

>>> pwm.consensus

Seq(’TACGC’)

>>> pwm.anticonsensus

Seq(’CCGTG’)

>>> pwm.degenerate_consensus

Seq(’WACNC’)

Note that due to the pseudocounts, the degenerate consensus sequence calculated from the position-weight
matrix is slightly different from the degenerate consensus sequence calculated from the instances in the motif:

>>> m.degenerate_consensus

Seq(’WACVC’)

The reverse complement of the position-weight matrix can be calculated directly from the pwm:

>>> rpwm = pwm.reverse_complement()

>>> print(rpwm)
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0 1 2 3 4

A: 0.07 0.07 0.29 0.07 0.51

C: 0.04 0.38 0.04 0.04 0.04

G: 0.71 0.27 0.60 0.04 0.04

T: 0.18 0.29 0.07 0.84 0.40

<BLANKLINE>

14.5 Position-Specific Scoring Matrices

Using the background distribution and PWM with pseudo-counts added, it’s easy to compute the log-odds
ratios, telling us what are the log odds of a particular symbol to be coming from a motif against the
background. We can use the .log_odds() method on the position-weight matrix:

>>> pssm = pwm.log_odds()

>>> print(pssm)

0 1 2 3 4

A: 0.68 1.76 -1.91 0.21 -0.49

C: -2.49 -2.49 1.26 0.09 1.51

G: -2.49 -2.49 -2.49 0.60 -2.49

T: 1.03 -1.91 0.21 -1.91 -1.91

<BLANKLINE>

Here we can see positive values for symbols more frequent in the motif than in the background and negative
for symbols more frequent in the background. 0.0 means that it’s equally likely to see a symbol in the
background and in the motif.

This assumes that A, C, G, and T are equally likely in the background. To calculate the position-specific
scoring matrix against a background with unequal probabilities for A, C, G, T, use the background argument.
For example, against a background with a 40% GC content, use

>>> background = {"A":0.3,"C":0.2,"G":0.2,"T":0.3}

>>> pssm = pwm.log_odds(background)

>>> print(pssm)

0 1 2 3 4

A: 0.42 1.49 -2.17 -0.05 -0.75

C: -2.17 -2.17 1.58 0.42 1.83

G: -2.17 -2.17 -2.17 0.92 -2.17

T: 0.77 -2.17 -0.05 -2.17 -2.17

<BLANKLINE>

The maximum and minimum score obtainable from the PSSM are stored in the .max and .min properties:

>>> print("%4.2f" % pssm.max)

6.59

>>> print("%4.2f" % pssm.min)

-10.85

The mean and standard deviation of the PSSM scores with respect to a specific background are calculated
by the .mean and .std methods.

>>> mean = pssm.mean(background)

>>> std = pssm.std(background)

>>> print("mean = %0.2f, standard deviation = %0.2f" % (mean, std))

mean = 3.21, standard deviation = 2.59
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A uniform background is used if background is not specified. The mean is particularly important, as its
value is equal to the Kullback-Leibler divergence or relative entropy, and is a measure for the information
content of the motif compared to the background. As in Biopython the base-2 logarithm is used in the
calculation of the log-odds scores, the information content has units of bits.

The .reverse_complement, .consensus, .anticonsensus, and .degenerate_consensus methods can
be applied directly to PSSM objects.

14.6 Searching for instances

The most frequent use for a motif is to find its instances in some sequence. For the sake of this section, we
will use an artificial sequence like this:

>>> test_seq=Seq("TACACTGCATTACAACCCAAGCATTA")

>>> len(test_seq)

26

14.6.1 Searching for exact matches

The simplest way to find instances, is to look for exact matches of the true instances of the motif:

>>> for pos, seq in m.instances.search(test_seq):

... print("%i %s" % (pos, seq))

...

0 TACAC

10 TACAA

13 AACCC

We can do the same with the reverse complement (to find instances on the complementary strand):

>>> for pos, seq in r.instances.search(test_seq):

... print("%i %s" % (pos, seq))

...

6 GCATT

20 GCATT

14.6.2 Searching for matches using the PSSM score

It’s just as easy to look for positions, giving rise to high log-odds scores against our motif:

>>> for position, score in pssm.search(test_seq, threshold=3.0):

... print("Position %d: score = %5.3f" % (position, score))

...

Position 0: score = 5.622

Position -20: score = 4.601

Position 10: score = 3.037

Position 13: score = 5.738

Position -6: score = 4.601

The negative positions refer to instances of the motif found on the reverse strand of the test sequence, and
follow the Python convention on negative indices. Therefore, the instance of the motif at pos is located at
test_seq[pos:pos+len(m)] both for positive and for negative values of pos.
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You may notice the threshold parameter, here set arbitrarily to 3.0. This is in log2, so we are now looking
only for words, which are eight times more likely to occur under the motif model than in the background.
The default threshold is 0.0, which selects everything that looks more like the motif than the background.

You can also calculate the scores at all positions along the sequence:

>>> pssm.calculate(test_seq)

array([ 5.62230396, -5.6796999 , -3.43177247, 0.93827754,

-6.84962511, -2.04066086, -10.84962463, -3.65614533,

-0.03370807, -3.91102552, 3.03734159, -2.14918518,

-0.6016975 , 5.7381525 , -0.50977498, -3.56422281,

-8.73414803, -0.09919716, -0.6016975 , -2.39429784,

-10.84962463, -3.65614533], dtype=float32)

In general, this is the fastest way to calculate PSSM scores. The scores returned by pssm.calculate are for
the forward strand only. To obtain the scores on the reverse strand, you can take the reverse complement of
the PSSM:

>>> rpssm = pssm.reverse_complement()

>>> rpssm.calculate(test_seq)

array([ -9.43458748, -3.06172252, -7.18665981, -7.76216221,

-2.04066086, -4.26466274, 4.60124254, -4.2480607 ,

-8.73414803, -2.26503372, -6.49598789, -5.64668512,

-8.73414803, -10.84962463, -4.82356262, -4.82356262,

-5.64668512, -8.73414803, -4.15613794, -5.6796999 ,

4.60124254, -4.2480607 ], dtype=float32)

14.6.3 Selecting a score threshold

If you want to use a less arbitrary way of selecting thresholds, you can explore the distribution of PSSM
scores. Since the space for a score distribution grows exponentially with motif length, we are using an
approximation with a given precision to keep computation cost manageable:

>>> distribution = pssm.distribution(background=background, precision=10**4)

The distribution object can be used to determine a number of different thresholds. We can specify the
requested false-positive rate (probability of “finding” a motif instance in background generated sequence):

>>> threshold = distribution.threshold_fpr(0.01)

>>> print("%5.3f" % threshold)

4.009

or the false-negative rate (probability of “not finding” an instance generated from the motif):

>>> threshold = distribution.threshold_fnr(0.1)

>>> print("%5.3f" % threshold)

-0.510

or a threshold (approximately) satisfying some relation between the false-positive rate and the false-negative

rate ( fnr
fpr
' t):

>>> threshold = distribution.threshold_balanced(1000)

>>> print("%5.3f" % threshold)

6.241
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or a threshold satisfying (roughly) the equality between the −log of the false-positive rate and the information
content (as used in patser software by Hertz and Stormo):

>>> threshold = distribution.threshold_patser()

>>> print("%5.3f" % threshold)

0.346

For example, in case of our motif, you can get the threshold giving you exactly the same results (for this
sequence) as searching for instances with balanced threshold with rate of 1000.

>>> threshold = distribution.threshold_fpr(0.01)

>>> print("%5.3f" % threshold)

4.009

>>> for position, score in pssm.search(test_seq, threshold=threshold):

... print("Position %d: score = %5.3f" % (position, score))

...

Position 0: score = 5.622

Position -20: score = 4.601

Position 13: score = 5.738

Position -6: score = 4.601

14.7 Each motif object has an associated Position-Specific Scoring
Matrix

To facilitate searching for potential TFBSs using PSSMs, both the position-weight matrix and the position-
specific scoring matrix are associated with each motif. Using the Arnt motif as an example:

>>> from Bio import motifs

>>> with open("Arnt.sites") as handle:

... motif = motifs.read(handle, "sites")

...

>>> print(motif.counts)

0 1 2 3 4 5

A: 4.00 19.00 0.00 0.00 0.00 0.00

C: 16.00 0.00 20.00 0.00 0.00 0.00

G: 0.00 1.00 0.00 20.00 0.00 20.00

T: 0.00 0.00 0.00 0.00 20.00 0.00

<BLANKLINE>

>>> print(motif.pwm)

0 1 2 3 4 5

A: 0.20 0.95 0.00 0.00 0.00 0.00

C: 0.80 0.00 1.00 0.00 0.00 0.00

G: 0.00 0.05 0.00 1.00 0.00 1.00

T: 0.00 0.00 0.00 0.00 1.00 0.00

<BLANKLINE>

>>> print(motif.pssm)

0 1 2 3 4 5

A: -0.32 1.93 -inf -inf -inf -inf

C: 1.68 -inf 2.00 -inf -inf -inf

G: -inf -2.32 -inf 2.00 -inf 2.00

T: -inf -inf -inf -inf 2.00 -inf

<BLANKLINE>
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The negative infinities appear here because the corresponding entry in the frequency matrix is 0, and we are
using zero pseudocounts by default:

>>> for letter in "ACGT":

... print("%s: %4.2f" % (letter, motif.pseudocounts[letter]))

...

A: 0.00

C: 0.00

G: 0.00

T: 0.00

If you change the .pseudocounts attribute, the position-frequency matrix and the position-specific scoring
matrix are recalculated automatically:

>>> motif.pseudocounts = 3.0

>>> for letter in "ACGT":

... print("%s: %4.2f" % (letter, motif.pseudocounts[letter]))

...

A: 3.00

C: 3.00

G: 3.00

T: 3.00

>>> print(motif.pwm)

0 1 2 3 4 5

A: 0.22 0.69 0.09 0.09 0.09 0.09

C: 0.59 0.09 0.72 0.09 0.09 0.09

G: 0.09 0.12 0.09 0.72 0.09 0.72

T: 0.09 0.09 0.09 0.09 0.72 0.09

<BLANKLINE>

>>> print(motif.pssm)

0 1 2 3 4 5

A: -0.19 1.46 -1.42 -1.42 -1.42 -1.42

C: 1.25 -1.42 1.52 -1.42 -1.42 -1.42

G: -1.42 -1.00 -1.42 1.52 -1.42 1.52

T: -1.42 -1.42 -1.42 -1.42 1.52 -1.42

<BLANKLINE>

You can also set the .pseudocounts to a dictionary over the four nucleotides if you want to use different
pseudocounts for them. Setting motif.pseudocounts to None resets it to its default value of zero.

The position-specific scoring matrix depends on the background distribution, which is uniform by default:

>>> for letter in "ACGT":

... print("%s: %4.2f" % (letter, motif.background[letter]))

...

A: 0.25

C: 0.25

G: 0.25

T: 0.25

Again, if you modify the background distribution, the position-specific scoring matrix is recalculated:
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>>> motif.background = {"A": 0.2, "C": 0.3, "G": 0.3, "T": 0.2}

>>> print(motif.pssm)

0 1 2 3 4 5

A: 0.13 1.78 -1.09 -1.09 -1.09 -1.09

C: 0.98 -1.68 1.26 -1.68 -1.68 -1.68

G: -1.68 -1.26 -1.68 1.26 -1.68 1.26

T: -1.09 -1.09 -1.09 -1.09 1.85 -1.09

<BLANKLINE>

Setting motif.background to None resets it to a uniform distribution:

>>> motif.background = None

>>> for letter in "ACGT":

... print("%s: %4.2f" % (letter, motif.background[letter]))

...

A: 0.25

C: 0.25

G: 0.25

T: 0.25

If you set motif.background equal to a single value, it will be interpreted as the GC content:

>>> motif.background = 0.8

>>> for letter in "ACGT":

... print("%s: %4.2f" % (letter, motif.background[letter]))

...

A: 0.10

C: 0.40

G: 0.40

T: 0.10

Note that you can now calculate the mean of the PSSM scores over the background against which it was
computed:

>>> print("%f" % motif.pssm.mean(motif.background))

4.703928

as well as its standard deviation:

>>> print("%f" % motif.pssm.std(motif.background))

3.290900

and its distribution:

>>> distribution = motif.pssm.distribution(background=motif.background)

>>> threshold = distribution.threshold_fpr(0.01)

>>> print("%f" % threshold)

3.854375

Note that the position-weight matrix and the position-specific scoring matrix are recalculated each time
you call motif.pwm or motif.pssm, respectively. If speed is an issue and you want to use the PWM or PSSM
repeatedly, you can save them as a variable, as in

>>> pssm = motif.pssm
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14.8 Comparing motifs

Once we have more than one motif, we might want to compare them.
Before we start comparing motifs, I should point out that motif boundaries are usually quite arbitrary.

This means we often need to compare motifs of different lengths, so comparison needs to involve some kind
of alignment. This means we have to take into account two things:

• alignment of motifs

• some function to compare aligned motifs

To align the motifs, we use ungapped alignment of PSSMs and substitute zeros for any missing columns at the
beginning and end of the matrices. This means that effectively we are using the background distribution for
columns missing from the PSSM. The distance function then returns the minimal distance between motifs,
as well as the corresponding offset in their alignment.

To give an example, let us first load another motif, which is similar to our test motif m:

>>> with open("REB1.pfm") as handle:

... m_reb1 = motifs.read(handle, "pfm")

...

>>> m_reb1.consensus

Seq(’GTTACCCGG’)

>>> print(m_reb1.counts)

0 1 2 3 4 5 6 7 8

A: 30.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 15.00

C: 10.00 0.00 0.00 0.00 100.00 100.00 100.00 0.00 15.00

G: 50.00 0.00 0.00 0.00 0.00 0.00 0.00 60.00 55.00

T: 10.00 100.00 100.00 0.00 0.00 0.00 0.00 40.00 15.00

<BLANKLINE>

To make the motifs comparable, we choose the same values for the pseudocounts and the background
distribution as our motif m:

>>> m_reb1.pseudocounts = {"A":0.6, "C": 0.4, "G": 0.4, "T": 0.6}

>>> m_reb1.background = {"A":0.3,"C":0.2,"G":0.2,"T":0.3}

>>> pssm_reb1 = m_reb1.pssm

>>> print(pssm_reb1)

0 1 2 3 4 5 6 7 8

A: 0.00 -5.67 -5.67 1.72 -5.67 -5.67 -5.67 -5.67 -0.97

C: -0.97 -5.67 -5.67 -5.67 2.30 2.30 2.30 -5.67 -0.41

G: 1.30 -5.67 -5.67 -5.67 -5.67 -5.67 -5.67 1.57 1.44

T: -1.53 1.72 1.72 -5.67 -5.67 -5.67 -5.67 0.41 -0.97

<BLANKLINE>

We’ll compare these motifs using the Pearson correlation. Since we want it to resemble a distance measure,
we actually take 1− r, where r is the Pearson correlation coefficient (PCC):

>>> distance, offset = pssm.dist_pearson(pssm_reb1)

>>> print("distance = %5.3g" % distance)

distance = 0.239

>>> print(offset)

-2

This means that the best PCC between motif m and m_reb1 is obtained with the following alignment:
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m: bbTACGCbb

m_reb1: GTTACCCGG

where b stands for background distribution. The PCC itself is roughly 1− 0.239 = 0.761.

14.9 De novo motif finding

Currently, Biopython has only limited support for de novo motif finding. Namely, we support running
xxmotif and also parsing of MEME. Since the number of motif finding tools is growing rapidly, contributions
of new parsers are welcome.

14.9.1 MEME

Let’s assume, you have run MEME on sequences of your choice with your favorite parameters and saved the
output in the file meme.out. You can retrieve the motifs reported by MEME by running the following piece
of code:

>>> from Bio import motifs

>>> with open("meme.out") as handle:

... motifsM = motifs.parse(handle, "meme")

...

>>> motifsM

[<Bio.motifs.meme.Motif object at 0xc356b0>]

Besides the most wanted list of motifs, the result object contains more useful information, accessible
through properties with self-explanatory names:

• .alphabet

• .datafile

• .sequence_names

• .version

• .command

The motifs returned by the MEME Parser can be treated exactly like regular Motif objects (with in-
stances), they also provide some extra functionality, by adding additional information about the instances.

>>> motifsM[0].consensus

Seq(’CTCAATCGTA’)

>>> motifsM[0].instances[0].sequence_name

’SEQ10;’

>>> motifsM[0].instances[0].start

3

>>> motifsM[0].instances[0].strand

’+’

>>> motifsM[0].instances[0].pvalue

8.71e-07
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14.10 Useful links

• Sequence motif in wikipedia

• PWM in wikipedia

• Consensus sequence in wikipedia

• Comparison of different motif finding programs
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Chapter 15

Cluster analysis

Cluster analysis is the grouping of items into clusters based on the similarity of the items to each other.
In bioinformatics, clustering is widely used in gene expression data analysis to find groups of genes with
similar gene expression profiles. This may identify functionally related genes, as well as suggest the function
of presently unknown genes.

The Biopython module Bio.Cluster provides commonly used clustering algorithms and was designed
with the application to gene expression data in mind. However, this module can also be used for cluster
analysis of other types of data. Bio.Cluster and the underlying C Clustering Library is described by De
Hoon et al. [15].

The following four clustering approaches are implemented in Bio.Cluster:

• Hierarchical clustering (pairwise centroid-, single-, complete-, and average-linkage);

• k-means, k-medians, and k-medoids clustering;

• Self-Organizing Maps;

• Principal Component Analysis.

Data representation

The data to be clustered are represented by a n × m Numerical Python array data. Within the context
of gene expression data clustering, typically the rows correspond to different genes whereas the columns
correspond to different experimental conditions. The clustering algorithms in Bio.Cluster can be applied
both to rows (genes) and to columns (experiments).

Missing values

The n × m Numerical Python integer array mask indicates if any of the values in data are missing. If
mask[i, j] == 0, then data[i, j] is missing and is ignored in the analysis.

Random number generator

The k-means/medians/medoids clustering algorithms and Self-Organizing Maps (SOMs) include the use
of a random number generator. The uniform random number generator in Bio.Cluster is based on the
algorithm by L’Ecuyer [31], while random numbers following the binomial distribution are generated using
the BTPE algorithm by Kachitvichyanukul and Schmeiser [28]. The random number generator is initialized
automatically during its first call. As this random number generator uses a combination of two multiplicative
linear congruential generators, two (integer) seeds are needed for initialization, for which we use the system-
supplied random number generator rand (in the C standard library). We initialize this generator by calling
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srand with the epoch time in seconds, and use the first two random numbers generated by rand as seeds for
the uniform random number generator in Bio.Cluster.

15.1 Distance functions

In order to cluster items into groups based on their similarity, we should first define what exactly we mean
by similar. Bio.Cluster provides eight distance functions, indicated by a single character, to measure
similarity, or conversely, distance:

• ’e’: Euclidean distance;

• ’b’: City-block distance.

• ’c’: Pearson correlation coefficient;

• ’a’: Absolute value of the Pearson correlation coefficient;

• ’u’: Uncentered Pearson correlation (equivalent to the cosine of the angle between two data vectors);

• ’x’: Absolute uncentered Pearson correlation;

• ’s’: Spearman’s rank correlation;

• ’k’: Kendall’s τ .

The first two are true distance functions that satisfy the triangle inequality:

d (u, v) ≤ d (u,w) + d (w, v) for all u, v, w,

and are therefore refered to as metrics. In everyday language, this means that the shortest distance between
two points is a straight line.

The remaining six distance measures are related to the correlation coefficient, where the distance d is
defined in terms of the correlation r by d = 1− r. Note that these distance functions are semi-metrics that
do not satisfy the triangle inequality. For example, for

u = (1, 0,−1) ;

v = (1, 1, 0) ;

w = (0, 1, 1) ;

we find a Pearson distance d (u,w) = 1.8660, while d (u, v) + d (v, w) = 1.6340.

Euclidean distance

In Bio.Cluster, we define the Euclidean distance as

d =
1

n

n∑
i=1

(xi − yi)2 .

Only those terms are included in the summation for which both xi and yi are present, and the denominator
n is chosen accordingly. As the expression data xi and yi are subtracted directly from each other, we should
make sure that the expression data are properly normalized when using the Euclidean distance.
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City-block distance

The city-block distance, alternatively known as the Manhattan distance, is related to the Euclidean distance.
Whereas the Euclidean distance corresponds to the length of the shortest path between two points, the city-
block distance is the sum of distances along each dimension. As gene expression data tend to have missing
values, in Bio.Cluster we define the city-block distance as the sum of distances divided by the number of
dimensions:

d =
1

n

n∑
i=1

|xi − yi| .

This is equal to the distance you would have to walk between two points in a city, where you have to walk
along city blocks. As for the Euclidean distance, the expression data are subtracted directly from each other,
and we should therefore make sure that they are properly normalized.

The Pearson correlation coefficient

The Pearson correlation coefficient is defined as

r =
1

n

n∑
i=1

(
xi − x̄
σx

)(
yi − ȳ
σy

)
,

in which x̄, ȳ are the sample mean of x and y respectively, and σx, σy are the sample standard deviation
of x and y. The Pearson correlation coefficient is a measure for how well a straight line can be fitted to
a scatterplot of x and y. If all the points in the scatterplot lie on a straight line, the Pearson correlation
coefficient is either +1 or -1, depending on whether the slope of line is positive or negative. If the Pearson
correlation coefficient is equal to zero, there is no correlation between x and y.

The Pearson distance is then defined as
dP ≡ 1− r.

As the Pearson correlation coefficient lies between -1 and 1, the Pearson distance lies between 0 and 2.

Absolute Pearson correlation

By taking the absolute value of the Pearson correlation, we find a number between 0 and 1. If the absolute
value is 1, all the points in the scatter plot lie on a straight line with either a positive or a negative slope. If
the absolute value is equal to zero, there is no correlation between x and y.

The corresponding distance is defined as

dA ≡ 1− |r| ,

where r is the Pearson correlation coefficient. As the absolute value of the Pearson correlation coefficient
lies between 0 and 1, the corresponding distance lies between 0 and 1 as well.

In the context of gene expression experiments, the absolute correlation is equal to 1 if the gene expression
profiles of two genes are either exactly the same or exactly opposite. The absolute correlation coefficient
should therefore be used with care.

Uncentered correlation (cosine of the angle)

In some cases, it may be preferable to use the uncentered correlation instead of the regular Pearson correlation
coefficient. The uncentered correlation is defined as

rU =
1

n

n∑
i=1

(
xi

σ
(0)
x

)(
yi

σ
(0)
y

)
,

246



where

σ(0)
x =

√√√√ 1

n

n∑
i=1

x2i ;

σ(0)
y =

√√√√ 1

n

n∑
i=1

y2i .

This is the same expression as for the regular Pearson correlation coefficient, except that the sample means
x̄, ȳ are set equal to zero. The uncentered correlation may be appropriate if there is a zero reference state. For
instance, in the case of gene expression data given in terms of log-ratios, a log-ratio equal to zero corresponds
to the green and red signal being equal, which means that the experimental manipulation did not affect the
gene expression.

The distance corresponding to the uncentered correlation coefficient is defined as

dU ≡ 1− rU,

where rU is the uncentered correlation. As the uncentered correlation coefficient lies between -1 and 1, the
corresponding distance lies between 0 and 2.

The uncentered correlation is equal to the cosine of the angle of the two data vectors in n-dimensional
space, and is often referred to as such.

Absolute uncentered correlation

As for the regular Pearson correlation, we can define a distance measure using the absolute value of the
uncentered correlation:

dAU ≡ 1−
∣∣rU∣∣ ,

where rU is the uncentered correlation coefficient. As the absolute value of the uncentered correlation
coefficient lies between 0 and 1, the corresponding distance lies between 0 and 1 as well.

Geometrically, the absolute value of the uncentered correlation is equal to the cosine between the support-
ing lines of the two data vectors (i.e., the angle without taking the direction of the vectors into consideration).

Spearman rank correlation

The Spearman rank correlation is an example of a non-parametric similarity measure, and tends to be more
robust against outliers than the Pearson correlation.

To calculate the Spearman rank correlation, we replace each data value by their rank if we would order
the data in each vector by their value. We then calculate the Pearson correlation between the two rank
vectors instead of the data vectors.

As in the case of the Pearson correlation, we can define a distance measure corresponding to the Spearman
rank correlation as

dS ≡ 1− rS,
where rS is the Spearman rank correlation.

Kendall’s τ

Kendall’s τ is another example of a non-parametric similarity measure. It is similar to the Spearman rank
correlation, but instead of the ranks themselves only the relative ranks are used to calculate τ (see Snedecor
& Cochran [37]).

We can define a distance measure corresponding to Kendall’s τ as

dK ≡ 1− τ.

As Kendall’s τ is always between -1 and 1, the corresponding distance will be between 0 and 2.
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Weighting

For most of the distance functions available in Bio.Cluster, a weight vector can be applied. The weight
vector contains weights for the items in the data vector. If the weight for item i is wi, then that item is
treated as if it occurred wi times in the data. The weight do not have to be integers.

Calculating the distance matrix

The distance matrix is a square matrix with all pairwise distances between the items in data, and can be
calculated by the function distancematrix in the Bio.Cluster module:

>>> from Bio.Cluster import distancematrix

>>> matrix = distancematrix(data)

where the following arguments are defined:

• data (required)
Array containing the data for the items.

• mask (default: None)
Array of integers showing which data are missing. If mask[i, j] == 0, then data[i, j] is missing.
If mask is None, then all data are present.

• weight (default: None)
The weights to be used when calculating distances. If weight is None, then equal weights are assumed.

• transpose (default: 0)
Determines if the distances between the rows of data are to be calculated (transpose is False), or
between the columns of data (transpose is True).

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

To save memory, the distance matrix is returned as a list of 1D arrays. The number of columns in each
row is equal to the row number. Hence, the first row has zero elements. For example,

>>> from numpy import array

>>> from Bio.Cluster import distancematrix

>>> data = array([[0, 1, 2, 3],

... [4, 5, 6, 7],

... [8, 9, 10, 11],

... [1, 2, 3, 4]])

>>> distances = distancematrix(data, dist=’e’)

yields a distance matrix

>>> distances

[array([], dtype=float64), array([ 16.]), array([ 64., 16.]), array([ 1., 9., 49.])]

which can be rewritten as

[array([], dtype=float64), array([16.0]), array([64.0, 16.0]), array([1.0, 9.0, 49.0])]

This corresponds to the distance matrix: 
0 16 64 1
16 0 16 9
64 16 0 49
1 9 49 0

 .
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15.2 Calculating cluster properties

Calculating the cluster centroids

The centroid of a cluster can be defined either as the mean or as the median of each dimension over all
cluster items. The function clustercentroids in Bio.Cluster can be used to calculate either:

>>> from Bio.Cluster import clustercentroids

>>> cdata, cmask = clustercentroids(data)

where the following arguments are defined:

• data (required)
Array containing the data for the items.

• mask (default: None)
Array of integers showing which data are missing. If mask[i, j] == 0, then data[i, j] is missing.
If mask is None, then all data are present.

• clusterid (default: None)
Vector of integers showing to which cluster each item belongs. If clusterid is None, then all items are
assumed to belong to the same cluster.

• method (default: ’a’)
Specifies whether the arithmetic mean (method==’a’) or the median (method==’m’) is used to calculate
the cluster center.

• transpose (default: 0)
Determines if the centroids of the rows of data are to be calculated (transpose is False), or the
centroids of the columns of data (transpose is True).

This function returns the tuple (cdata, cmask). The centroid data are stored in the 2D Numerical
Python array cdata, with missing data indicated by the 2D Numerical Python integer array cmask. The di-
mensions of these arrays are (number of clusters,number of columns) if transpose is 0, or (number of rows,number of clusters)
if transpose is 1. Each row (if transpose is 0) or column (if transpose is 1) contains the averaged data
corresponding to the centroid of each cluster.

Calculating the distance between clusters

Given a distance function between items, we can define the distance between two clusters in several ways.
The distance between the arithmetic means of the two clusters is used in pairwise centroid-linkage clustering
and in k-means clustering. In k-medoids clustering, the distance between the medians of the two clusters
is used instead. The shortest pairwise distance between items of the two clusters is used in pairwise single-
linkage clustering, while the longest pairwise distance is used in pairwise maximum-linkage clustering. In
pairwise average-linkage clustering, the distance between two clusters is defined as the average over the
pairwise distances.

To calculate the distance between two clusters, use

>>> from Bio.Cluster import clusterdistance

>>> distance = clusterdistance(data)

where the following arguments are defined:

• data (required)
Array containing the data for the items.
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• mask (default: None)
Array of integers showing which data are missing. If mask[i, j] == 0, then data[i, j] is missing.
If mask is None, then all data are present.

• weight (default: None)
The weights to be used when calculating distances. If weight is None, then equal weights are assumed.

• index1 (default: 0)
A list containing the indices of the items belonging to the first cluster. A cluster containing only one
item i can be represented either as a list [i], or as an integer i.

• index2 (default: 0)
A list containing the indices of the items belonging to the second cluster. A cluster containing only
one items i can be represented either as a list [i], or as an integer i.

• method (default: ’a’)
Specifies how the distance between clusters is defined:

– ’a’: Distance between the two cluster centroids (arithmetic mean);

– ’m’: Distance between the two cluster centroids (median);

– ’s’: Shortest pairwise distance between items in the two clusters;

– ’x’: Longest pairwise distance between items in the two clusters;

– ’v’: Average over the pairwise distances between items in the two clusters.

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

• transpose (default: 0)
If transpose is False, calculate the distance between the rows of data. If transpose is True, calculate
the distance between the columns of data.

15.3 Partitioning algorithms

Partitioning algorithms divide items into k clusters such that the sum of distances over the items to their
cluster centers is minimal. The number of clusters k is specified by the user. Three partitioning algorithms
are available in Bio.Cluster:

• k-means clustering

• k-medians clustering

• k-medoids clustering

These algorithms differ in how the cluster center is defined. In k-means clustering, the cluster center is
defined as the mean data vector averaged over all items in the cluster. Instead of the mean, in k-medians
clustering the median is calculated for each dimension in the data vector. Finally, in k-medoids clustering
the cluster center is defined as the item which has the smallest sum of distances to the other items in the
cluster. This clustering algorithm is suitable for cases in which the distance matrix is known but the original
data matrix is not available, for example when clustering proteins based on their structural similarity.

The expectation-maximization (EM) algorithm is used to find this partitioning into k groups. In the
initialization of the EM algorithm, we randomly assign items to clusters. To ensure that no empty clusters
are produced, we use the binomial distribution to randomly choose the number of items in each cluster to
be one or more. We then randomly permute the cluster assignments to items such that each item has an
equal probability to be in any cluster. Each cluster is thus guaranteed to contain at least one item.

We then iterate:
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• Calculate the centroid of each cluster, defined as either the mean, the median, or the medoid of the
cluster;

• Calculate the distances of each item to the cluster centers;

• For each item, determine which cluster centroid is closest;

• Reassign each item to its closest cluster, or stop the iteration if no further item reassignments take
place.

To avoid clusters becoming empty during the iteration, in k-means and k-medians clustering the algorithm
keeps track of the number of items in each cluster, and prohibits the last remaining item in a cluster from
being reassigned to a different cluster. For k-medoids clustering, such a check is not needed, as the item that
functions as the cluster centroid has a zero distance to itself, and will therefore never be closer to a different
cluster.

As the initial assignment of items to clusters is done randomly, usually a different clustering solution
is found each time the EM algorithm is executed. To find the optimal clustering solution, the k-means
algorithm is repeated many times, each time starting from a different initial random clustering. The sum of
distances of the items to their cluster center is saved for each run, and the solution with the smallest value
of this sum will be returned as the overall clustering solution.

How often the EM algorithm should be run depends on the number of items being clustered. As a
rule of thumb, we can consider how often the optimal solution was found; this number is returned by the
partitioning algorithms as implemented in this library. If the optimal solution was found many times, it is
unlikely that better solutions exist than the one that was found. However, if the optimal solution was found
only once, there may well be other solutions with a smaller within-cluster sum of distances. If the number
of items is large (more than several hundreds), it may be difficult to find the globally optimal solution.

The EM algorithm terminates when no further reassignments take place. We noticed that for some
sets of initial cluster assignments, the EM algorithm fails to converge due to the same clustering solution
reappearing periodically after a small number of iteration steps. We therefore check for the occurrence of
such periodic solutions during the iteration. After a given number of iteration steps, the current clustering
result is saved as a reference. By comparing the clustering result after each subsequent iteration step to the
reference state, we can determine if a previously encountered clustering result is found. In such a case, the
iteration is halted. If after a given number of iterations the reference state has not yet been encountered, the
current clustering solution is saved to be used as the new reference state. Initially, ten iteration steps are
executed before resaving the reference state. This number of iteration steps is doubled each time, to ensure
that periodic behavior with longer periods can also be detected.

k-means and k-medians

The k-means and k-medians algorithms are implemented as the function kcluster in Bio.Cluster:

>>> from Bio.Cluster import kcluster

>>> clusterid, error, nfound = kcluster(data)

where the following arguments are defined:

• data (required)
Array containing the data for the items.

• nclusters (default: 2)
The number of clusters k.

• mask (default: None)
Array of integers showing which data are missing. If mask[i, j] == 0, then data[i, j] is missing.
If mask is None, then all data are present.
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• weight (default: None)
The weights to be used when calculating distances. If weight is None, then equal weights are assumed.

• transpose (default: 0)
Determines if rows (transpose is 0) or columns (transpose is 1) are to be clustered.

• npass (default: 1)
The number of times the k-means/-medians clustering algorithm is performed, each time with a differ-
ent (random) initial condition. If initialid is given, the value of npass is ignored and the clustering
algorithm is run only once, as it behaves deterministically in that case.

• method (default: a)
describes how the center of a cluster is found:

– method==’a’: arithmetic mean (k-means clustering);

– method==’m’: median (k-medians clustering).

For other values of method, the arithmetic mean is used.

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1). Whereas all eight distance measures are accepted
by kcluster, from a theoretical viewpoint it is best to use the Euclidean distance for the k-means
algorithm, and the city-block distance for k-medians.

• initialid (default: None)
Specifies the initial clustering to be used for the EM algorithm. If initialid is None, then a different
random initial clustering is used for each of the npass runs of the EM algorithm. If initialid is not
None, then it should be equal to a 1D array containing the cluster number (between 0 and nclusters-1)
for each item. Each cluster should contain at least one item. With the initial clustering specified, the
EM algorithm is deterministic.

This function returns a tuple (clusterid, error, nfound), where clusterid is an integer array con-
taining the number of the cluster to which each row or cluster was assigned, error is the within-cluster sum
of distances for the optimal clustering solution, and nfound is the number of times this optimal solution was
found.

k-medoids clustering

The kmedoids routine performs k-medoids clustering on a given set of items, using the distance matrix and
the number of clusters passed by the user:

>>> from Bio.Cluster import kmedoids

>>> clusterid, error, nfound = kmedoids(distance)

where the following arguments are defined: , nclusters=2, npass=1, initialid=None)—

• distance (required)
The matrix containing the distances between the items; this matrix can be specified in three ways:

– as a 2D Numerical Python array (in which only the left-lower part of the array will be accessed):

distance = array([[0.0, 1.1, 2.3], [1.1, 0.0, 4.5], [2.3, 4.5, 0.0]])

– as a 1D Numerical Python array containing consecutively the distances in the left-lower part of
the distance matrix:

distance = array([1.1, 2.3, 4.5])
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– as a list containing the rows of the left-lower part of the distance matrix:

distance = [array([]), array([1.1]), array([2.3, 4.5])]

These three expressions correspond to the same distance matrix.

• nclusters (default: 2)
The number of clusters k.

• npass (default: 1)
The number of times the k-medoids clustering algorithm is performed, each time with a different
(random) initial condition. If initialid is given, the value of npass is ignored, as the clustering
algorithm behaves deterministically in that case.

• initialid (default: None)
Specifies the initial clustering to be used for the EM algorithm. If initialid is None, then a different
random initial clustering is used for each of the npass runs of the EM algorithm. If initialid is not
None, then it should be equal to a 1D array containing the cluster number (between 0 and nclusters-1)
for each item. Each cluster should contain at least one item. With the initial clustering specified, the
EM algorithm is deterministic.

This function returns a tuple (clusterid, error, nfound), where clusterid is an array containing
the number of the cluster to which each item was assigned, error is the within-cluster sum of distances
for the optimal k-medoids clustering solution, and nfound is the number of times the optimal solution was
found. Note that the cluster number in clusterid is defined as the item number of the item representing
the cluster centroid.

15.4 Hierarchical clustering

Hierarchical clustering methods are inherently different from the k-means clustering method. In hierarchical
clustering, the similarity in the expression profile between genes or experimental conditions are represented
in the form of a tree structure. This tree structure can be shown graphically by programs such as Treeview
and Java Treeview, which has contributed to the popularity of hierarchical clustering in the analysis of gene
expression data.

The first step in hierarchical clustering is to calculate the distance matrix, specifying all the distances
between the items to be clustered. Next, we create a node by joining the two closest items. Subsequent
nodes are created by pairwise joining of items or nodes based on the distance between them, until all items
belong to the same node. A tree structure can then be created by retracing which items and nodes were
merged. Unlike the EM algorithm, which is used in k-means clustering, the complete process of hierarchical
clustering is deterministic.

Several flavors of hierarchical clustering exist, which differ in how the distance between subnodes is defined
in terms of their members. In Bio.Cluster, pairwise single, maximum, average, and centroid linkage are
available.

• In pairwise single-linkage clustering, the distance between two nodes is defined as the shortest distance
among the pairwise distances between the members of the two nodes.

• In pairwise maximum-linkage clustering, alternatively known as pairwise complete-linkage clustering,
the distance between two nodes is defined as the longest distance among the pairwise distances between
the members of the two nodes.

• In pairwise average-linkage clustering, the distance between two nodes is defined as the average over
all pairwise distances between the items of the two nodes.
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• In pairwise centroid-linkage clustering, the distance between two nodes is defined as the distance
between their centroids. The centroids are calculated by taking the mean over all the items in a cluster.
As the distance from each newly formed node to existing nodes and items need to be calculated at each
step, the computing time of pairwise centroid-linkage clustering may be significantly longer than for the
other hierarchical clustering methods. Another peculiarity is that (for a distance measure based on the
Pearson correlation), the distances do not necessarily increase when going up in the clustering tree, and
may even decrease. This is caused by an inconsistency between the centroid calculation and the distance
calculation when using the Pearson correlation: Whereas the Pearson correlation effectively normalizes
the data for the distance calculation, no such normalization occurs for the centroid calculation.

For pairwise single-, complete-, and average-linkage clustering, the distance between two nodes can be
found directly from the distances between the individual items. Therefore, the clustering algorithm does not
need access to the original gene expression data, once the distance matrix is known. For pairwise centroid-
linkage clustering, however, the centroids of newly formed subnodes can only be calculated from the original
data and not from the distance matrix.

The implementation of pairwise single-linkage hierarchical clustering is based on the SLINK algorithm
(R. Sibson, 1973), which is much faster and more memory-efficient than a straightforward implementation
of pairwise single-linkage clustering. The clustering result produced by this algorithm is identical to the
clustering solution found by the conventional single-linkage algorithm. The single-linkage hierarchical clus-
tering algorithm implemented in this library can be used to cluster large gene expression data sets, for which
conventional hierarchical clustering algorithms fail due to excessive memory requirements and running time.

Representing a hierarchical clustering solution

The result of hierarchical clustering consists of a tree of nodes, in which each node joins two items or
subnodes. Usually, we are not only interested in which items or subnodes are joined at each node, but also
in their similarity (or distance) as they are joined. To store one node in the hierarchical clustering tree, we
make use of the class Node, which defined in Bio.Cluster. An instance of Node has three attributes:

• left

• right

• distance

Here, left and right are integers referring to the two items or subnodes that are joined at this node, and
distance is the distance between them. The items being clustered are numbered from 0 to (number of items− 1),
while clusters are numbered from -1 to − (number of items− 1). Note that the number of nodes is one less
than the number of items.

To create a new Node object, we need to specify left and right; distance is optional.

>>> from Bio.Cluster import Node

>>> Node(2, 3)

(2, 3): 0

>>> Node(2, 3, 0.91)

(2, 3): 0.91

The attributes left, right, and distance of an existing Node object can be modified directly:

>>> node = Node(4, 5)

>>> node.left = 6

>>> node.right = 2

>>> node.distance = 0.73

>>> node

(6, 2): 0.73
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An error is raised if left and right are not integers, or if distance cannot be converted to a floating-point
value.

The Python class Tree represents a full hierarchical clustering solution. A Tree object can be created
from a list of Node objects:

>>> from Bio.Cluster import Node, Tree

>>> nodes = [Node(1, 2, 0.2), Node(0, 3, 0.5), Node(-2, 4, 0.6), Node(-1, -3, 0.9)]

>>> tree = Tree(nodes)

>>> print(tree)

(1, 2): 0.2

(0, 3): 0.5

(-2, 4): 0.6

(-1, -3): 0.9

The Tree initializer checks if the list of nodes is a valid hierarchical clustering result:

>>> nodes = [Node(1, 2, 0.2), Node(0, 2, 0.5)]

>>> Tree(nodes)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

ValueError: Inconsistent tree

Individual nodes in a Tree object can be accessed using square brackets:

>>> nodes = [Node(1, 2, 0.2), Node(0, -1, 0.5)]

>>> tree = Tree(nodes)

>>> tree[0]

(1, 2): 0.2

>>> tree[1]

(0, -1): 0.5

>>> tree[-1]

(0, -1): 0.5

As a Tree object is immutable, we cannot change individual nodes in a Tree object. However, we can
convert the tree to a list of nodes, modify this list, and create a new tree from this list:

>>> tree = Tree([Node(1, 2, 0.1), Node(0, -1, 0.5), Node(-2, 3, 0.9)])

>>> print(tree)

(1, 2): 0.1

(0, -1): 0.5

(-2, 3): 0.9

>>> nodes = tree[:]

>>> nodes[0] = Node(0, 1, 0.2)

>>> nodes[1].left = 2

>>> tree = Tree(nodes)

>>> print(tree)

(0, 1): 0.2

(2, -1): 0.5

(-2, 3): 0.9

This guarantees that any Tree object is always well-formed.
To display a hierarchical clustering solution with visualization programs such as Java Treeview, it is

better to scale all node distances such that they are between zero and one. This can be accomplished by
calling the scale method on an existing Tree object:
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>>> tree.scale()

This method takes no arguments, and returns None.
Before drawing the tree, you may also want to reorder the tree nodes. A hierarchical clustering solution of

n items can be drawn as 2n−1 different but equivalent dendrograms by switching the left and right subnode
at each node. The tree.sort(order) method visits each node in the hierarchical clustering tree and verifies
if the average order value of the left subnode is less than or equal to the average order value of the right
subnode. If not, the left and right subnodes are exchanged. Here, the order values of the items are given
by the user. In the resulting dendrogram, items in the left-to-right order will tend to have increasing order
values. The method will return the indices of the elements in the left-to-right order after sorting:

>>> indices = tree.sort(order)

such that item indices[i] will occur at position i in the dendrogram.
After hierarchical clustering, the items can be grouped into k clusters based on the tree structure stored

in the Tree object by cutting the tree:

>>> clusterid = tree.cut(nclusters=1)

where nclusters (defaulting to 1) is the desired number of clusters k. This method ignores the top k − 1
linking events in the tree structure, resulting in k separated clusters of items. The number of clusters k
should be positive, and less than or equal to the number of items. This method returns an array clusterid

containing the number of the cluster to which each item is assigned. Clusters are numbered 0 to k − 1 in
their left-to-right order in the dendrogram.

Performing hierarchical clustering

To perform hierarchical clustering, use the treecluster function in Bio.Cluster.

>>> from Bio.Cluster import treecluster

>>> tree = treecluster(data)

where the following arguments are defined:

• data

Array containing the data for the items.

• mask (default: None)
Array of integers showing which data are missing. If mask[i, j] == 0, then data[i, j] is missing.
If mask is None, then all data are present.

• weight (default: None)
The weights to be used when calculating distances. If weight is None, then equal weights are assumed.

• transpose (default: 0)
Determines if rows (transpose is False) or columns (transpose is True) are to be clustered.

• method (default: ’m’)
defines the linkage method to be used:

– method==’s’: pairwise single-linkage clustering

– method==’m’: pairwise maximum- (or complete-) linkage clustering

– method==’c’: pairwise centroid-linkage clustering

– method==’a’: pairwise average-linkage clustering
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• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

To apply hierarchical clustering on a precalculated distance matrix, specify the distancematrix argument
when calling treecluster function instead of the data argument:

>>> from Bio.Cluster import treecluster

>>> tree = treecluster(distancematrix=distance)

In this case, the following arguments are defined:

• distancematrix

The distance matrix, which can be specified in three ways:

– as a 2D Numerical Python array (in which only the left-lower part of the array will be accessed):

distance = array([[0.0, 1.1, 2.3], [1.1, 0.0, 4.5], [2.3, 4.5, 0.0]])

– as a 1D Numerical Python array containing consecutively the distances in the left-lower part of
the distance matrix:

distance = array([1.1, 2.3, 4.5])

– as a list containing the rows of the left-lower part of the distance matrix:

distance = [array([]), array([1.1]), array([2.3, 4.5])]

These three expressions correspond to the same distance matrix. As treecluster may shuffle the
values in the distance matrix as part of the clustering algorithm, be sure to save this array in a
different variable before calling treecluster if you need it later.

• method

The linkage method to be used:

– method==’s’: pairwise single-linkage clustering

– method==’m’: pairwise maximum- (or complete-) linkage clustering

– method==’a’: pairwise average-linkage clustering

While pairwise single-, maximum-, and average-linkage clustering can be calculated from the distance
matrix alone, pairwise centroid-linkage cannot.

When calling treecluster, either data or distancematrix should be None.
This function returns a Tree object. This object contains (number of items− 1) nodes, where the number

of items is the number of rows if rows were clustered, or the number of columns if columns were clustered.
Each node describes a pairwise linking event, where the node attributes left and right each contain the
number of one item or subnode, and distance the distance between them. Items are numbered from 0 to
(number of items− 1), while clusters are numbered -1 to − (number of items− 1).

15.5 Self-Organizing Maps

Self-Organizing Maps (SOMs) were invented by Kohonen to describe neural networks (see for instance
Kohonen, 1997 [30]). Tamayo (1999) first applied Self-Organizing Maps to gene expression data [38].

SOMs organize items into clusters that are situated in some topology. Usually a rectangular topology is
chosen. The clusters generated by SOMs are such that neighboring clusters in the topology are more similar
to each other than clusters far from each other in the topology.

The first step to calculate a SOM is to randomly assign a data vector to each cluster in the topology. If
rows are being clustered, then the number of elements in each data vector is equal to the number of columns.
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An SOM is then generated by taking rows one at a time, and finding which cluster in the topology has
the closest data vector. The data vector of that cluster, as well as those of the neighboring clusters, are
adjusted using the data vector of the row under consideration. The adjustment is given by

∆xcell = τ ·
(
xrow − xcell

)
.

The parameter τ is a parameter that decreases at each iteration step. We have used a simple linear function
of the iteration step:

τ = τinit ·
(

1− i

n

)
,

τinit is the initial value of τ as specified by the user, i is the number of the current iteration step, and n is
the total number of iteration steps to be performed. While changes are made rapidly in the beginning of the
iteration, at the end of iteration only small changes are made.

All clusters within a radius R are adjusted to the gene under consideration. This radius decreases as the
calculation progresses as

R = Rmax ·
(

1− i

n

)
,

in which the maximum radius is defined as

Rmax =
√
N2
x +N2

y ,

where (Nx, Ny) are the dimensions of the rectangle defining the topology.
The function somcluster implements the complete algorithm to calculate a Self-Organizing Map on a

rectangular grid. First it initializes the random number generator. The node data are then initialized using
the random number generator. The order in which genes or samples are used to modify the SOM is also
randomized. The total number of iterations in the SOM algorithm is specified by the user.

To run somcluster, use

>>> from Bio.Cluster import somcluster

>>> clusterid, celldata = somcluster(data)

where the following arguments are defined:

• data (required)
Array containing the data for the items.

• mask (default: None)
Array of integers showing which data are missing. If mask[i, j] == 0, then data[i, j] is missing.
If mask is None, then all data are present.

• weight (default: None)
contains the weights to be used when calculating distances. If weight is None, then equal weights are
assumed.

• transpose (default: 0)
Determines if rows (transpose is 0) or columns (transpose is 1) are to be clustered.

• nxgrid, nygrid (default: 2, 1)
The number of cells horizontally and vertically in the rectangular grid on which the Self-Organizing
Map is calculated.

• inittau (default: 0.02)
The initial value for the parameter τ that is used in the SOM algorithm. The default value for inittau
is 0.02, which was used in Michael Eisen’s Cluster/TreeView program.
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• niter (default: 1)
The number of iterations to be performed.

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

This function returns the tuple (clusterid, celldata):

• clusterid:
An array with two columns, where the number of rows is equal to the number of items that were
clustered. Each row contains the x and y coordinates of the cell in the rectangular SOM grid to which
the item was assigned.

• celldata:
An array with dimensions (nxgrid, nygrid,number of columns) if rows are being clustered, or (nxgrid, nygrid,number of rows)
if columns are being clustered. Each element [ix][iy] of this array is a 1D vector containing the gene
expression data for the centroid of the cluster in the grid cell with coordinates [ix][iy].

15.6 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique for analyzing multivariate data. A practical
example of applying Principal Component Analysis to gene expression data is presented by Yeung and Ruzzo
(2001) [42].

In essence, PCA is a coordinate transformation in which each row in the data matrix is written as a linear
sum over basis vectors called principal components, which are ordered and chosen such that each maximally
explains the remaining variance in the data vectors. For example, an n× 3 data matrix can be represented
as an ellipsoidal cloud of n points in three dimensional space. The first principal component is the longest
axis of the ellipsoid, the second principal component the second longest axis of the ellipsoid, and the third
principal component is the shortest axis. Each row in the data matrix can be reconstructed as a suitable
linear combination of the principal components. However, in order to reduce the dimensionality of the data,
usually only the most important principal components are retained. The remaining variance present in the
data is then regarded as unexplained variance.

The principal components can be found by calculating the eigenvectors of the covariance matrix of the
data. The corresponding eigenvalues determine how much of the variance present in the data is explained
by each principal component.

Before applying principal component analysis, typically the mean is subtracted from each column in the
data matrix. In the example above, this effectively centers the ellipsoidal cloud around its centroid in 3D
space, with the principal components describing the variation of points in the ellipsoidal cloud with respect
to their centroid.

The function pca below first uses the singular value decomposition to calculate the eigenvalues and
eigenvectors of the data matrix. The singular value decomposition is implemented as a translation in C of
the Algol procedure svd [18], which uses Householder bidiagonalization and a variant of the QR algorithm.
The principal components, the coordinates of each data vector along the principal components, and the
eigenvalues corresponding to the principal components are then evaluated and returned in decreasing order
of the magnitude of the eigenvalue. If data centering is desired, the mean should be subtracted from each
column in the data matrix before calling the pca routine.

To apply Principal Component Analysis to a rectangular matrix data, use

>>> from Bio.Cluster import pca

>>> columnmean, coordinates, components, eigenvalues = pca(data)

This function returns a tuple columnmean, coordinates, components, eigenvalues:
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• columnmean

Array containing the mean over each column in data.

• coordinates

The coordinates of each row in data with respect to the principal components.

• components

The principal components.

• eigenvalues

The eigenvalues corresponding to each of the principal components.

The original matrix data can be recreated by calculating columnmean + dot(coordinates, components).

15.7 Handling Cluster/TreeView-type files

Cluster/TreeView are GUI-based codes for clustering gene expression data. They were originally written by
Michael Eisen while at Stanford University. Bio.Cluster contains functions for reading and writing data
files that correspond to the format specified for Cluster/TreeView. In particular, by saving a clustering
result in that format, TreeView can be used to visualize the clustering results. We recommend using Alok
Saldanha’s http://jtreeview.sourceforge.net/Java TreeView program, which can display hierarchical
as well as k-means clustering results.

An object of the class Record contains all information stored in a Cluster/TreeView-type data file. To
store the information contained in the data file in a Record object, we first open the file and then read it:

>>> from Bio import Cluster

>>> with open("mydatafile.txt") as handle:

... record = Cluster.read(handle)

...

This two-step process gives you some flexibility in the source of the data. For example, you can use

>>> import gzip # Python standard library

>>> handle = gzip.open("mydatafile.txt.gz", "rt")

to open a gzipped file, or

>>> from urllib.request import urlopen # Python 3 only

>>> from io import TextIOWrapper

>>> handle = TextIOWrapper(urlopen("https://raw.githubusercontent.com/biopython/biopython/master/Tests/Cluster/cyano.txt"))

to open a file stored on the Internet before calling read.
Note for Python 2 this can be done by using:

>>> from urllib import urlopen # Python 2 only

>>> handle = urlopen("https://raw.githubusercontent.com/biopython/biopython/master/Tests/Cluster/cyano.txt")

The read command reads the tab-delimited text file mydatafile.txt containing gene expression data in
the format specified for Michael Eisen’s Cluster/TreeView program. In this file format, rows represent genes
and columns represent samples or observations. For a simple time course, a minimal input file would look
like this:
Each row (gene) has an identifier that always goes in the first column. In this example, we are using yeast
open reading frame codes. Each column (sample) has a label in the first row. In this example, the labels
describe the time at which a sample was taken. The first column of the first row contains a special field that
tells the program what kind of objects are in each row. In this case, YORF stands for yeast open reading
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YORF 0 minutes 30 minutes 1 hour 2 hours 4 hours
YAL001C 1 1.3 2.4 5.8 2.4
YAL002W 0.9 0.8 0.7 0.5 0.2
YAL003W 0.8 2.1 4.2 10.1 10.1
YAL005C 1.1 1.3 0.8 0.4
YAL010C 1.2 1 1.1 4.5 8.3

frame. This field can be any alpha-numeric value. The remaining cells in the table contain data for the
appropriate gene and sample. The 5.8 in row 2 column 4 means that the observed value for gene YAL001C
at 2 hours was 5.8. Missing values are acceptable and are designated by empty cells (e.g. YAL004C at 2
hours).

The input file may contain additional information. A maximal input file would look like this:

YORF NAME GWEIGHT GORDER 0 30 1 2 4
EWEIGHT 1 1 1 1 0
EORDER 5 3 2 1 1
YAL001C TFIIIC 138 KD SUBUNIT 1 1 1 1.3 2.4 5.8 2.4
YAL002W UNKNOWN 0.4 3 0.9 0.8 0.7 0.5 0.2
YAL003W ELONGATION FACTOR EF1-BETA 0.4 2 0.8 2.1 4.2 10.1 10.1
YAL005C CYTOSOLIC HSP70 0.4 5 1.1 1.3 0.8 0.4

The added columns NAME, GWEIGHT, and GORDER and rows EWEIGHT and EORDER are optional.
The NAME column allows you to specify a label for each gene that is distinct from the ID in column 1.

A Record object has the following attributes:

• data

The data array containing the gene expression data. Genes are stored row-wise, while samples are
stored column-wise.

• mask

This array shows which elements in the data array, if any, are missing. If mask[i, j] == 0, then
data[i, j] is missing. If no data were found to be missing, mask is set to None.

• geneid

This is a list containing a unique description for each gene (i.e., ORF numbers).

• genename

This is a list containing a description for each gene (i.e., gene name). If not present in the data file,
genename is set to None.

• gweight

The weights that are to be used to calculate the distance in expression profile between genes. If not
present in the data file, gweight is set to None.

• gorder

The preferred order in which genes should be stored in an output file. If not present in the data file,
gorder is set to None.

• expid

This is a list containing a description of each sample, e.g. experimental condition.
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• eweight

The weights that are to be used to calculate the distance in expression profile between samples. If not
present in the data file, eweight is set to None.

• eorder

The preferred order in which samples should be stored in an output file. If not present in the data file,
eorder is set to None.

• uniqid

The string that was used instead of UNIQID in the data file.

After loading a Record object, each of these attributes can be accessed and modified directly. For
example, the data can be log-transformed by taking the logarithm of record.data.

Calculating the distance matrix

To calculate the distance matrix between the items stored in the record, use

>>> matrix = record.distancematrix()

where the following arguments are defined:

• transpose (default: 0)
Determines if the distances between the rows of data are to be calculated (transpose is False), or
between the columns of data (transpose is True).

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

This function returns the distance matrix as a list of rows, where the number of columns of each row is
equal to the row number (see section 15.1).

Calculating the cluster centroids

To calculate the centroids of clusters of items stored in the record, use

>>> cdata, cmask = record.clustercentroids()

• clusterid (default: None)
Vector of integers showing to which cluster each item belongs. If clusterid is not given, then all items
are assumed to belong to the same cluster.

• method (default: ’a’)
Specifies whether the arithmetic mean (method==’a’) or the median (method==’m’) is used to calculate
the cluster center.

• transpose (default: 0)
Determines if the centroids of the rows of data are to be calculated (transpose is False), or the
centroids of the columns of data (transpose is True).

This function returns the tuple cdata, cmask; see section 15.2 for a description.
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Calculating the distance between clusters

To calculate the distance between clusters of items stored in the record, use

>>> distance = record.clusterdistance()

where the following arguments are defined:

• index1 (default: 0)
A list containing the indices of the items belonging to the first cluster. A cluster containing only one
item i can be represented either as a list [i], or as an integer i.

• index2 (default: 0)
A list containing the indices of the items belonging to the second cluster. A cluster containing only
one item i can be represented either as a list [i], or as an integer i.

• method (default: ’a’)
Specifies how the distance between clusters is defined:

– ’a’: Distance between the two cluster centroids (arithmetic mean);

– ’m’: Distance between the two cluster centroids (median);

– ’s’: Shortest pairwise distance between items in the two clusters;

– ’x’: Longest pairwise distance between items in the two clusters;

– ’v’: Average over the pairwise distances between items in the two clusters.

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

• transpose (default: 0)
If transpose is False, calculate the distance between the rows of data. If transpose is True, calculate
the distance between the columns of data.

Performing hierarchical clustering

To perform hierarchical clustering on the items stored in the record, use

>>> tree = record.treecluster()

where the following arguments are defined:

• transpose (default: 0)
Determines if rows (transpose is False) or columns (transpose is True) are to be clustered.

• method (default: ’m’)
defines the linkage method to be used:

– method==’s’: pairwise single-linkage clustering

– method==’m’: pairwise maximum- (or complete-) linkage clustering

– method==’c’: pairwise centroid-linkage clustering

– method==’a’: pairwise average-linkage clustering

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).
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• transpose

Determines if genes or samples are being clustered. If transpose is False, genes (rows) are being
clustered. If transpose is True, samples (columns) are clustered.

This function returns a Tree object. This object contains (number of items− 1) nodes, where the number
of items is the number of rows if rows were clustered, or the number of columns if columns were clustered.
Each node describes a pairwise linking event, where the node attributes left and right each contain the
number of one item or subnode, and distance the distance between them. Items are numbered from 0 to
(number of items− 1), while clusters are numbered -1 to − (number of items− 1).

Performing k-means or k-medians clustering

To perform k-means or k-medians clustering on the items stored in the record, use

>>> clusterid, error, nfound = record.kcluster()

where the following arguments are defined:

• nclusters (default: 2)
The number of clusters k.

• transpose (default: 0)
Determines if rows (transpose is 0) or columns (transpose is 1) are to be clustered.

• npass (default: 1)
The number of times the k-means/-medians clustering algorithm is performed, each time with a differ-
ent (random) initial condition. If initialid is given, the value of npass is ignored and the clustering
algorithm is run only once, as it behaves deterministically in that case.

• method (default: a)
describes how the center of a cluster is found:

– method==’a’: arithmetic mean (k-means clustering);

– method==’m’: median (k-medians clustering).

For other values of method, the arithmetic mean is used.

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

This function returns a tuple (clusterid, error, nfound), where clusterid is an integer array con-
taining the number of the cluster to which each row or cluster was assigned, error is the within-cluster sum
of distances for the optimal clustering solution, and nfound is the number of times this optimal solution was
found.

Calculating a Self-Organizing Map

To calculate a Self-Organizing Map of the items stored in the record, use

>>> clusterid, celldata = record.somcluster()

where the following arguments are defined:

• transpose (default: 0)
Determines if rows (transpose is 0) or columns (transpose is 1) are to be clustered.
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• nxgrid, nygrid (default: 2, 1)
The number of cells horizontally and vertically in the rectangular grid on which the Self-Organizing
Map is calculated.

• inittau (default: 0.02)
The initial value for the parameter τ that is used in the SOM algorithm. The default value for inittau
is 0.02, which was used in Michael Eisen’s Cluster/TreeView program.

• niter (default: 1)
The number of iterations to be performed.

• dist (default: ’e’, Euclidean distance)
Defines the distance function to be used (see 15.1).

This function returns the tuple (clusterid, celldata):

• clusterid:
An array with two columns, where the number of rows is equal to the number of items that were
clustered. Each row contains the x and y coordinates of the cell in the rectangular SOM grid to which
the item was assigned.

• celldata:
An array with dimensions (nxgrid, nygrid,number of columns) if rows are being clustered, or (nxgrid, nygrid,number of rows)
if columns are being clustered. Each element [ix][iy] of this array is a 1D vector containing the gene
expression data for the centroid of the cluster in the grid cell with coordinates [ix][iy].

Saving the clustering result

To save the clustering result, use

>>> record.save(jobname, geneclusters, expclusters)

where the following arguments are defined:

• jobname

The string jobname is used as the base name for names of the files that are to be saved.

• geneclusters

This argument describes the gene (row-wise) clustering result. In case of k-means clustering, this is
a 1D array containing the number of the cluster each gene belongs to. It can be calculated using
kcluster. In case of hierarchical clustering, geneclusters is a Tree object.

• expclusters

This argument describes the (column-wise) clustering result for the experimental conditions. In case of
k-means clustering, this is a 1D array containing the number of the cluster each experimental condition
belongs to. It can be calculated using kcluster. In case of hierarchical clustering, expclusters is a
Tree object.

This method writes the text file jobname.cdt, jobname.gtr, jobname.atr, jobname*.kgg, and/or
jobname*.kag for subsequent reading by the Java TreeView program. If geneclusters and expclusters

are both None, this method only writes the text file jobname.cdt; this file can subsequently be read into a
new Record object.

265



15.8 Example calculation

This is an example of a hierarchical clustering calculation, using single linkage clustering for genes and
maximum linkage clustering for experimental conditions. As the Euclidean distance is being used for gene
clustering, it is necessary to scale the node distances genetree such that they are all between zero and one.
This is needed for the Java TreeView code to display the tree diagram correctly. To cluster the experimental
conditions, the uncentered correlation is being used. No scaling is needed in this case, as the distances in
exptree are already between zero and two.

The example data cyano.txt can be found in Biopython’s Tests/Cluster subdirectory and is from the
paper [25, Hihara et al., 2001].

>>> from Bio import Cluster

>>> with open("cyano.txt") as handle:

... record = Cluster.read(handle)

...

>>> genetree = record.treecluster(method="s")

>>> genetree.scale()

>>> exptree = record.treecluster(dist="u", transpose=1)

>>> record.save("cyano_result", genetree, exptree)

This will create the files cyano_result.cdt, cyano_result.gtr, and cyano_result.atr.
Similarly, we can save a k-means clustering solution:

>>> from Bio import Cluster

>>> with open("cyano.txt") as handle:

... record = Cluster.read(handle)

...

>>> (geneclusters, error, ifound) = record.kcluster(nclusters=5, npass=1000)

>>> (expclusters, error, ifound) = record.kcluster(nclusters=2, npass=100, transpose=1)

>>> record.save("cyano_result", geneclusters, expclusters)

This will create the files cyano_result_K_G2_A2.cdt, cyano_result_K_G2.kgg, and cyano_result_K_A2.kag.
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Chapter 16

Supervised learning methods

Note the supervised learning methods described in this chapter all require Numerical Python (numpy) to be
installed.

16.1 The Logistic Regression Model

16.1.1 Background and Purpose

Logistic regression is a supervised learning approach that attempts to distinguish K classes from each other
using a weighted sum of some predictor variables xi. The logistic regression model is used to calculate the
weights βi of the predictor variables. In Biopython, the logistic regression model is currently implemented
for two classes only (K = 2); the number of predictor variables has no predefined limit.

As an example, let’s try to predict the operon structure in bacteria. An operon is a set of adjacent genes
on the same strand of DNA that are transcribed into a single mRNA molecule. Translation of the single
mRNA molecule then yields the individual proteins. For Bacillus subtilis, whose data we will be using, the
average number of genes in an operon is about 2.4.

As a first step in understanding gene regulation in bacteria, we need to know the operon structure. For
about 10% of the genes in Bacillus subtilis, the operon structure is known from experiments. A supervised
learning method can be used to predict the operon structure for the remaining 90% of the genes.

For such a supervised learning approach, we need to choose some predictor variables xi that can be
measured easily and are somehow related to the operon structure. One predictor variable might be the
distance in base pairs between genes. Adjacent genes belonging to the same operon tend to be separated by
a relatively short distance, whereas adjacent genes in different operons tend to have a larger space between
them to allow for promoter and terminator sequences. Another predictor variable is based on gene expression
measurements. By definition, genes belonging to the same operon have equal gene expression profiles, while
genes in different operons are expected to have different expression profiles. In practice, the measured
expression profiles of genes in the same operon are not quite identical due to the presence of measurement
errors. To assess the similarity in the gene expression profiles, we assume that the measurement errors follow
a normal distribution and calculate the corresponding log-likelihood score.

We now have two predictor variables that we can use to predict if two adjacent genes on the same strand
of DNA belong to the same operon:

• x1: the number of base pairs between them;

• x2: their similarity in expression profile.

In a logistic regression model, we use a weighted sum of these two predictors to calculate a joint score S:

S = β0 + β1x1 + β2x2. (16.1)

267



The logistic regression model gives us appropriate values for the parameters β0, β1, β2 using two sets of
example genes:

• OP: Adjacent genes, on the same strand of DNA, known to belong to the same operon;

• NOP: Adjacent genes, on the same strand of DNA, known to belong to different operons.

In the logistic regression model, the probability of belonging to a class depends on the score via the
logistic function. For the two classes OP and NOP, we can write this as

Pr(OP|x1, x2) =
exp(β0 + β1x1 + β2x2)

1 + exp(β0 + β1x1 + β2x2)
(16.2)

Pr(NOP|x1, x2) =
1

1 + exp(β0 + β1x1 + β2x2)
(16.3)

Using a set of gene pairs for which it is known whether they belong to the same operon (class OP) or to
different operons (class NOP), we can calculate the weights β0, β1, β2 by maximizing the log-likelihood
corresponding to the probability functions (16.2) and (16.3).

16.1.2 Training the logistic regression model

Table 16.1: Adjacent gene pairs known to belong to the same operon (class OP) or to different operons (class
NOP). Intergene distances are negative if the two genes overlap.

Gene pair Intergene distance (x1) Gene expression score (x2) Class
cotJA — cotJB -53 -200.78 OP
yesK — yesL 117 -267.14 OP
lplA — lplB 57 -163.47 OP
lplB — lplC 16 -190.30 OP
lplC — lplD 11 -220.94 OP
lplD — yetF 85 -193.94 OP

yfmT — yfmS 16 -182.71 OP
yfmF — yfmE 15 -180.41 OP

citS — citT -26 -181.73 OP
citM — yflN 58 -259.87 OP
yfiI — yfiJ 126 -414.53 NOP
lipB — yfiQ 191 -249.57 NOP
yfiU — yfiV 113 -265.28 NOP
yfhH — yfhI 145 -312.99 NOP
cotY — cotX 154 -213.83 NOP
yjoB — rapA 147 -380.85 NOP
ptsI — splA 93 -291.13 NOP

Table 16.1 lists some of the Bacillus subtilis gene pairs for which the operon structure is known. Let’s
calculate the logistic regression model from these data:

>>> from Bio import LogisticRegression

>>> xs = [[-53, -200.78],

[117, -267.14],

[57, -163.47],

[16, -190.30],

[11, -220.94],
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[85, -193.94],

[16, -182.71],

[15, -180.41],

[-26, -181.73],

[58, -259.87],

[126, -414.53],

[191, -249.57],

[113, -265.28],

[145, -312.99],

[154, -213.83],

[147, -380.85],

[93, -291.13]]

>>> ys = [1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

0,

0,

0,

0,

0,

0,

0]

>>> model = LogisticRegression.train(xs, ys)

Here, xs and ys are the training data: xs contains the predictor variables for each gene pair, and ys

specifies if the gene pair belongs to the same operon (1, class OP) or different operons (0, class NOP). The
resulting logistic regression model is stored in model, which contains the weights β0, β1, and β2:

>>> model.beta

[8.9830290157144681, -0.035968960444850887, 0.02181395662983519]

Note that β1 is negative, as gene pairs with a shorter intergene distance have a higher probability of
belonging to the same operon (class OP). On the other hand, β2 is positive, as gene pairs belonging to the
same operon typically have a higher similarity score of their gene expression profiles. The parameter β0 is
positive due to the higher prevalence of operon gene pairs than non-operon gene pairs in the training data.

The function train has two optional arguments: update_fn and typecode. The update_fn can be used
to specify a callback function, taking as arguments the iteration number and the log-likelihood. With the
callback function, we can for example track the progress of the model calculation (which uses a Newton-
Raphson iteration to maximize the log-likelihood function of the logistic regression model):

>>> def show_progress(iteration, loglikelihood):

print("Iteration:", iteration, "Log-likelihood function:", loglikelihood)

>>>

>>> model = LogisticRegression.train(xs, ys, update_fn=show_progress)

Iteration: 0 Log-likelihood function: -11.7835020695

Iteration: 1 Log-likelihood function: -7.15886767672
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Iteration: 2 Log-likelihood function: -5.76877209868

Iteration: 3 Log-likelihood function: -5.11362294338

Iteration: 4 Log-likelihood function: -4.74870642433

Iteration: 5 Log-likelihood function: -4.50026077146

Iteration: 6 Log-likelihood function: -4.31127773737

Iteration: 7 Log-likelihood function: -4.16015043396

Iteration: 8 Log-likelihood function: -4.03561719785

Iteration: 9 Log-likelihood function: -3.93073282192

Iteration: 10 Log-likelihood function: -3.84087660929

Iteration: 11 Log-likelihood function: -3.76282560605

Iteration: 12 Log-likelihood function: -3.69425027154

Iteration: 13 Log-likelihood function: -3.6334178602

Iteration: 14 Log-likelihood function: -3.57900855837

Iteration: 15 Log-likelihood function: -3.52999671386

Iteration: 16 Log-likelihood function: -3.48557145163

Iteration: 17 Log-likelihood function: -3.44508206139

Iteration: 18 Log-likelihood function: -3.40799948447

Iteration: 19 Log-likelihood function: -3.3738885624

Iteration: 20 Log-likelihood function: -3.3423876581

Iteration: 21 Log-likelihood function: -3.31319343769

Iteration: 22 Log-likelihood function: -3.2860493346

Iteration: 23 Log-likelihood function: -3.2607366863

Iteration: 24 Log-likelihood function: -3.23706784091

Iteration: 25 Log-likelihood function: -3.21488073614

Iteration: 26 Log-likelihood function: -3.19403459259

Iteration: 27 Log-likelihood function: -3.17440646052

Iteration: 28 Log-likelihood function: -3.15588842703

Iteration: 29 Log-likelihood function: -3.13838533947

Iteration: 30 Log-likelihood function: -3.12181293595

Iteration: 31 Log-likelihood function: -3.10609629966

Iteration: 32 Log-likelihood function: -3.09116857282

Iteration: 33 Log-likelihood function: -3.07696988017

Iteration: 34 Log-likelihood function: -3.06344642288

Iteration: 35 Log-likelihood function: -3.05054971191

Iteration: 36 Log-likelihood function: -3.03823591619

Iteration: 37 Log-likelihood function: -3.02646530573

Iteration: 38 Log-likelihood function: -3.01520177394

Iteration: 39 Log-likelihood function: -3.00441242601

Iteration: 40 Log-likelihood function: -2.99406722296

Iteration: 41 Log-likelihood function: -2.98413867259

The iteration stops once the increase in the log-likelihood function is less than 0.01. If no convergence is
reached after 500 iterations, the train function returns with an AssertionError.

The optional keyword typecode can almost always be ignored. This keyword allows the user to choose
the type of Numeric matrix to use. In particular, to avoid memory problems for very large problems, it
may be necessary to use single-precision floats (Float8, Float16, etc.) rather than double, which is used by
default.

16.1.3 Using the logistic regression model for classification

Classification is performed by calling the classify function. Given a logistic regression model and the
values for x1 and x2 (e.g. for a gene pair of unknown operon structure), the classify function returns 1 or
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0, corresponding to class OP and class NOP, respectively. For example, let’s consider the gene pairs yxcE,
yxcD and yxiB, yxiA:

Table 16.2: Adjacent gene pairs of unknown operon status.
Gene pair Intergene distance x1 Gene expression score x2

yxcE — yxcD 6 -173.143442352
yxiB — yxiA 309 -271.005880394

The logistic regression model classifies yxcE, yxcD as belonging to the same operon (class OP), while
yxiB, yxiA are predicted to belong to different operons:

>>> print("yxcE, yxcD:", LogisticRegression.classify(model, [6, -173.143442352]))

yxcE, yxcD: 1

>>> print("yxiB, yxiA:", LogisticRegression.classify(model, [309, -271.005880394]))

yxiB, yxiA: 0

(which, by the way, agrees with the biological literature).
To find out how confident we can be in these predictions, we can call the calculate function to obtain

the probabilities (equations (16.2) and 16.3) for class OP and NOP. For yxcE, yxcD we find

>>> q, p = LogisticRegression.calculate(model, [6, -173.143442352])

>>> print("class OP: probability =", p, "class NOP: probability =", q)

class OP: probability = 0.993242163503 class NOP: probability = 0.00675783649744

and for yxiB, yxiA

>>> q, p = LogisticRegression.calculate(model, [309, -271.005880394])

>>> print("class OP: probability =", p, "class NOP: probability =", q)

class OP: probability = 0.000321211251817 class NOP: probability = 0.999678788748

To get some idea of the prediction accuracy of the logistic regression model, we can apply it to the
training data:

>>> for i in range(len(ys)):

print("True:", ys[i], "Predicted:", LogisticRegression.classify(model, xs[i]))

True: 1 Predicted: 1

True: 1 Predicted: 0

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0
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showing that the prediction is correct for all but one of the gene pairs. A more reliable estimate of the
prediction accuracy can be found from a leave-one-out analysis, in which the model is recalculated from the
training data after removing the gene to be predicted:

>>> for i in range(len(ys)):

model = LogisticRegression.train(xs[:i]+xs[i+1:], ys[:i]+ys[i+1:])

print("True:", ys[i], "Predicted:", LogisticRegression.classify(model, xs[i]))

True: 1 Predicted: 1

True: 1 Predicted: 0

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 1

True: 0 Predicted: 0

True: 0 Predicted: 0

The leave-one-out analysis shows that the prediction of the logistic regression model is incorrect for only two
of the gene pairs, which corresponds to a prediction accuracy of 88%.

16.1.4 Logistic Regression, Linear Discriminant Analysis, and Support Vector
Machines

The logistic regression model is similar to linear discriminant analysis. In linear discriminant analysis, the
class probabilities also follow equations (16.2) and (16.3). However, instead of estimating the coefficients β
directly, we first fit a normal distribution to the predictor variables x. The coefficients β are then calculated
from the means and covariances of the normal distribution. If the distribution of x is indeed normal, then
we expect linear discriminant analysis to perform better than the logistic regression model. The logistic
regression model, on the other hand, is more robust to deviations from normality.

Another similar approach is a support vector machine with a linear kernel. Such an SVM also uses a
linear combination of the predictors, but estimates the coefficients β from the predictor variables x near the
boundary region between the classes. If the logistic regression model (equations (16.2) and (16.3)) is a good
description for x away from the boundary region, we expect the logistic regression model to perform better
than an SVM with a linear kernel, as it relies on more data. If not, an SVM with a linear kernel may perform
better.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of Statistical Learning. Data
Mining, Inference, and Prediction. Springer Series in Statistics, 2001. Chapter 4.4.

16.2 k-Nearest Neighbors

16.2.1 Background and purpose

The k-nearest neighbors method is a supervised learning approach that does not need to fit a model to the
data. Instead, data points are classified based on the categories of the k nearest neighbors in the training
data set.
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In Biopython, the k-nearest neighbors method is available in Bio.kNN. To illustrate the use of the k-
nearest neighbor method in Biopython, we will use the same operon data set as in section 16.1.

16.2.2 Initializing a k-nearest neighbors model

Using the data in Table 16.1, we create and initialize a k-nearest neighbors model as follows:

>>> from Bio import kNN

>>> k = 3

>>> model = kNN.train(xs, ys, k)

where xs and ys are the same as in Section 16.1.2. Here, k is the number of neighbors k that will be
considered for the classification. For classification into two classes, choosing an odd number for k lets you
avoid tied votes. The function name train is a bit of a misnomer, since no model training is done: this
function simply stores xs, ys, and k in model.

16.2.3 Using a k-nearest neighbors model for classification

To classify new data using the k-nearest neighbors model, we use the classify function. This function takes
a data point (x1, x2) and finds the k-nearest neighbors in the training data set xs. The data point (x1, x2)
is then classified based on which category (ys) occurs most among the k neighbors.

For the example of the gene pairs yxcE, yxcD and yxiB, yxiA, we find:

>>> x = [6, -173.143442352]

>>> print("yxcE, yxcD:", kNN.classify(model, x))

yxcE, yxcD: 1

>>> x = [309, -271.005880394]

>>> print("yxiB, yxiA:", kNN.classify(model, x))

yxiB, yxiA: 0

In agreement with the logistic regression model, yxcE, yxcD are classified as belonging to the same operon
(class OP), while yxiB, yxiA are predicted to belong to different operons.

The classify function lets us specify both a distance function and a weight function as optional argu-
ments. The distance function affects which k neighbors are chosen as the nearest neighbors, as these are
defined as the neighbors with the smallest distance to the query point (x, y). By default, the Euclidean
distance is used. Instead, we could for example use the city-block (Manhattan) distance:

>>> def cityblock(x1, x2):

... assert len(x1)==2

... assert len(x2)==2

... distance = abs(x1[0]-x2[0]) + abs(x1[1]-x2[1])

... return distance

...

>>> x = [6, -173.143442352]

>>> print("yxcE, yxcD:", kNN.classify(model, x, distance_fn = cityblock))

yxcE, yxcD: 1

The weight function can be used for weighted voting. For example, we may want to give closer neighbors
a higher weight than neighbors that are further away:

>>> def weight(x1, x2):

... assert len(x1)==2

... assert len(x2)==2

... return exp(-abs(x1[0]-x2[0]) - abs(x1[1]-x2[1]))
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...

>>> x = [6, -173.143442352]

>>> print("yxcE, yxcD:", kNN.classify(model, x, weight_fn = weight))

yxcE, yxcD: 1

By default, all neighbors are given an equal weight.
To find out how confident we can be in these predictions, we can call the calculate function, which

will calculate the total weight assigned to the classes OP and NOP. For the default weighting scheme, this
reduces to the number of neighbors in each category. For yxcE, yxcD, we find

>>> x = [6, -173.143442352]

>>> weight = kNN.calculate(model, x)

>>> print("class OP: weight =", weight[0], "class NOP: weight =", weight[1])

class OP: weight = 0.0 class NOP: weight = 3.0

which means that all three neighbors of x1, x2 are in the NOP class. As another example, for yesK, yesL
we find

>>> x = [117, -267.14]

>>> weight = kNN.calculate(model, x)

>>> print("class OP: weight =", weight[0], "class NOP: weight =", weight[1])

class OP: weight = 2.0 class NOP: weight = 1.0

which means that two neighbors are operon pairs and one neighbor is a non-operon pair.
To get some idea of the prediction accuracy of the k-nearest neighbors approach, we can apply it to the

training data:

>>> for i in range(len(ys)):

print("True:", ys[i], "Predicted:", kNN.classify(model, xs[i]))

True: 1 Predicted: 1

True: 1 Predicted: 0

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

showing that the prediction is correct for all but two of the gene pairs. A more reliable estimate of the
prediction accuracy can be found from a leave-one-out analysis, in which the model is recalculated from the
training data after removing the gene to be predicted:

>>> k = 3

>>> for i in range(len(ys)):

model = kNN.train(xs[:i]+xs[i+1:], ys[:i]+ys[i+1:], k)
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print("True:", ys[i], "Predicted:", kNN.classify(model, xs[i]))

True: 1 Predicted: 1

True: 1 Predicted: 0

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 1

True: 1 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 1

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 0

True: 0 Predicted: 1

The leave-one-out analysis shows that k-nearest neighbors model is correct for 13 out of 17 gene pairs, which
corresponds to a prediction accuracy of 76%.

16.3 Näıve Bayes

This section will describe the Bio.NaiveBayes module.

16.4 Maximum Entropy

This section will describe the Bio.MaximumEntropy module.

16.5 Markov Models

This section will describe the Bio.MarkovModel and/or Bio.HMM.MarkovModel modules.
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Chapter 17

Graphics including GenomeDiagram

The Bio.Graphics module depends on the third party Python library ReportLab. Although focused on
producing PDF files, ReportLab can also create encapsulated postscript (EPS) and (SVG) files. In addition
to these vector based images, provided certain further dependencies such as the Python Imaging Library
(PIL) are installed, ReportLab can also output bitmap images (including JPEG, PNG, GIF, BMP and PICT
formats).

17.1 GenomeDiagram

17.1.1 Introduction

The Bio.Graphics.GenomeDiagram module was added to Biopython 1.50, having previously been available
as a separate Python module dependent on Biopython. GenomeDiagram is described in the Bioinformatics
journal publication by Pritchard et al. (2006) [2], which includes some examples images. There is a PDF
copy of the old manual here, http://biopython.org/DIST/docs/GenomeDiagram/userguide.pdf which
has some more examples.

As the name might suggest, GenomeDiagram was designed for drawing whole genomes, in particular
prokaryotic genomes, either as linear diagrams (optionally broken up into fragments to fit better) or as
circular wheel diagrams. Have a look at Figure 2 in Toth et al. (2006) [3] for a good example. It proved also
well suited to drawing quite detailed figures for smaller genomes such as phage, plasmids or mitochrondia,
for example see Figures 1 and 2 in Van der Auwera et al. (2009) [4] (shown with additional manual editing).

This module is easiest to use if you have your genome loaded as a SeqRecord object containing lots of
SeqFeature objects - for example as loaded from a GenBank file (see Chapters 4 and 5).

17.1.2 Diagrams, tracks, feature-sets and features

GenomeDiagram uses a nested set of objects. At the top level, you have a diagram object representing
a sequence (or sequence region) along the horizontal axis (or circle). A diagram can contain one or more
tracks, shown stacked vertically (or radially on circular diagrams). These will typically all have the same
length and represent the same sequence region. You might use one track to show the gene locations, another
to show regulatory regions, and a third track to show the GC percentage.

The most commonly used type of track will contain features, bundled together in feature-sets. You might
choose to use one feature-set for all your CDS features, and another for tRNA features. This isn’t required
- they can all go in the same feature-set, but it makes it easier to update the properties of just selected
features (e.g. make all the tRNA features red).

There are two main ways to build up a complete diagram. Firstly, the top down approach where you
create a diagram object, and then using its methods add track(s), and use the track methods to add feature-
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set(s), and use their methods to add the features. Secondly, you can create the individual objects separately
(in whatever order suits your code), and then combine them.

17.1.3 A top down example

We’re going to draw a whole genome from a SeqRecord object read in from a GenBank file (see Chapter 5).
This example uses the pPCP1 plasmid from Yersinia pestis biovar Microtus, the file is included with the
Biopython unit tests under the GenBank folder, or online NC 005816.gb from our website.

from reportlab.lib import colors

from reportlab.lib.units import cm

from Bio.Graphics import GenomeDiagram

from Bio import SeqIO

record = SeqIO.read("NC_005816.gb", "genbank")

We’re using a top down approach, so after loading in our sequence we next create an empty diagram,
then add an (empty) track, and to that add an (empty) feature set:

gd_diagram = GenomeDiagram.Diagram("Yersinia pestis biovar Microtus plasmid pPCP1")

gd_track_for_features = gd_diagram.new_track(1, name="Annotated Features")

gd_feature_set = gd_track_for_features.new_set()

Now the fun part - we take each gene SeqFeature object in our SeqRecord, and use it to generate a
feature on the diagram. We’re going to color them blue, alternating between a dark blue and a light blue.

for feature in record.features:

if feature.type != "gene":

# Exclude this feature

continue

if len(gd_feature_set) % 2 == 0:

color = colors.blue

else:

color = colors.lightblue

gd_feature_set.add_feature(feature, color=color, label=True)

Now we come to actually making the output file. This happens in two steps, first we call the draw method,
which creates all the shapes using ReportLab objects. Then we call the write method which renders these
to the requested file format. Note you can output in multiple file formats:

gd_diagram.draw(

format="linear",

orientation="landscape",

pagesize="A4",

fragments=4,

start=0,

end=len(record),

)

gd_diagram.write("plasmid_linear.pdf", "PDF")

gd_diagram.write("plasmid_linear.eps", "EPS")

gd_diagram.write("plasmid_linear.svg", "SVG")

Also, provided you have the dependencies installed, you can also do bitmaps, for example:
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Figure 17.1: Simple linear diagram for Yersinia pestis biovar Microtus plasmid pPCP1.

gd_diagram.write("plasmid_linear.png", "PNG")

The expected output is shown in Figure 17.1. Notice that the fragments argument which we set to
four controls how many pieces the genome gets broken up into.

If you want to do a circular figure, then try this:

gd_diagram.draw(

format="circular",

circular=True,

pagesize=(20 * cm, 20 * cm),

start=0,

end=len(record),

circle_core=0.7,

)

gd_diagram.write("plasmid_circular.pdf", "PDF")

The expected output is shown in Figure 17.2. These figures are not very exciting, but we’ve only just
got started.

17.1.4 A bottom up example

Now let’s produce exactly the same figures, but using the bottom up approach. This means we create the
different objects directly (and this can be done in almost any order) and then combine them.

from reportlab.lib import colors

from reportlab.lib.units import cm
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Figure 17.2: Simple circular diagram for Yersinia pestis biovar Microtus plasmid pPCP1.

from Bio.Graphics import GenomeDiagram

from Bio import SeqIO

record = SeqIO.read("NC_005816.gb", "genbank")

# Create the feature set and its feature objects,

gd_feature_set = GenomeDiagram.FeatureSet()

for feature in record.features:

if feature.type != "gene":

# Exclude this feature

continue

if len(gd_feature_set) % 2 == 0:

color = colors.blue

else:

color = colors.lightblue

gd_feature_set.add_feature(feature, color=color, label=True)

# (this for loop is the same as in the previous example)

# Create a track, and a diagram

gd_track_for_features = GenomeDiagram.Track(name="Annotated Features")

gd_diagram = GenomeDiagram.Diagram("Yersinia pestis biovar Microtus plasmid pPCP1")

# Now have to glue the bits together...

gd_track_for_features.add_set(gd_feature_set)

gd_diagram.add_track(gd_track_for_features, 1)

You can now call the draw and write methods as before to produce a linear or circular diagram, using
the code at the end of the top-down example above. The figures should be identical.
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17.1.5 Features without a SeqFeature

In the above example we used a SeqRecord’s SeqFeature objects to build our diagram (see also Section 4.3).
Sometimes you won’t have SeqFeature objects, but just the coordinates for a feature you want to draw.
You have to create minimal SeqFeature object, but this is easy:

from Bio.SeqFeature import SeqFeature, FeatureLocation

my_seq_feature = SeqFeature(FeatureLocation(50, 100), strand=+1)

For strand, use +1 for the forward strand, -1 for the reverse strand, and None for both. Here is a short
self contained example:

from Bio.SeqFeature import SeqFeature, FeatureLocation

from Bio.Graphics import GenomeDiagram

from reportlab.lib.units import cm

gdd = GenomeDiagram.Diagram("Test Diagram")

gdt_features = gdd.new_track(1, greytrack=False)

gds_features = gdt_features.new_set()

# Add three features to show the strand options,

feature = SeqFeature(FeatureLocation(25, 125), strand=+1)

gds_features.add_feature(feature, name="Forward", label=True)

feature = SeqFeature(FeatureLocation(150, 250), strand=None)

gds_features.add_feature(feature, name="Strandless", label=True)

feature = SeqFeature(FeatureLocation(275, 375), strand=-1)

gds_features.add_feature(feature, name="Reverse", label=True)

gdd.draw(format="linear", pagesize=(15 * cm, 4 * cm), fragments=1, start=0, end=400)

gdd.write("GD_labels_default.pdf", "pdf")

The output is shown at the top of Figure 17.3 (in the default feature color, pale green).
Notice that we have used the name argument here to specify the caption text for these features. This is

discussed in more detail next.

17.1.6 Feature captions

Recall we used the following (where feature was a SeqFeature object) to add a feature to the diagram:

gd_feature_set.add_feature(feature, color=color, label=True)

In the example above the SeqFeature annotation was used to pick a sensible caption for the features.
By default the following possible entries under the SeqFeature object’s qualifiers dictionary are used: gene,
label, name, locus tag, and product. More simply, you can specify a name directly:

gd_feature_set.add_feature(feature, color=color, label=True, name="My Gene")

In addition to the caption text for each feature’s label, you can also choose the font, position (this defaults
to the start of the sigil, you can also choose the middle or at the end) and orientation (for linear diagrams
only, where this defaults to rotated by 45 degrees):
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# Large font, parallel with the track

gd_feature_set.add_feature(

feature, label=True, color="green", label_size=25, label_angle=0

)

# Very small font, perpendicular to the track (towards it)

gd_feature_set.add_feature(

feature,

label=True,

color="purple",

label_position="end",

label_size=4,

label_angle=90,

)

# Small font, perpendicular to the track (away from it)

gd_feature_set.add_feature(

feature,

label=True,

color="blue",

label_position="middle",

label_size=6,

label_angle=-90,

)

Combining each of these three fragments with the complete example in the previous section should give
something like the tracks in Figure 17.3.

We’ve not shown it here, but you can also set label color to control the label’s color (used in Sec-
tion 17.1.9).

You’ll notice the default font is quite small - this makes sense because you will usually be drawing many
(small) features on a page, not just a few large ones as shown here.

17.1.7 Feature sigils

The examples above have all just used the default sigil for the feature, a plain box, which was all that was
available in the last publicly released standalone version of GenomeDiagram. Arrow sigils were included
when GenomeDiagram was added to Biopython 1.50:

# Default uses a BOX sigil

gd_feature_set.add_feature(feature)

# You can make this explicit:

gd_feature_set.add_feature(feature, sigil="BOX")

# Or opt for an arrow:

gd_feature_set.add_feature(feature, sigil="ARROW")

Biopython 1.61 added three more sigils,

# Box with corners cut off (making it an octagon)

gd_feature_set.add_feature(feature, sigil="OCTO")

# Box with jagged edges (useful for showing breaks in contains)
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Figure 17.3: Simple GenomeDiagram showing label options. The top plot in pale green shows the default
label settings (see Section 17.1.5) while the rest show variations in the label size, position and orientation
(see Section 17.1.6).
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gd_feature_set.add_feature(feature, sigil="JAGGY")

# Arrow which spans the axis with strand used only for direction

gd_feature_set.add_feature(feature, sigil="BIGARROW")

These are shown in Figure 17.4. Most sigils fit into a bounding box (as given by the default BOX sigil),
either above or below the axis for the forward or reverse strand, or straddling it (double the height) for
strand-less features. The BIGARROW sigil is different, always straddling the axis with the direction taken
from the feature’s stand.

17.1.8 Arrow sigils

We introduced the arrow sigils in the previous section. There are two additional options to adjust the shapes
of the arrows, firstly the thickness of the arrow shaft, given as a proportion of the height of the bounding
box:

# Full height shafts, giving pointed boxes:

gd_feature_set.add_feature(feature, sigil="ARROW", color="brown", arrowshaft_height=1.0)

# Or, thin shafts:

gd_feature_set.add_feature(feature, sigil="ARROW", color="teal", arrowshaft_height=0.2)

# Or, very thin shafts:

gd_feature_set.add_feature(

feature, sigil="ARROW", color="darkgreen", arrowshaft_height=0.1

)

The results are shown in Figure 17.5.
Secondly, the length of the arrow head - given as a proportion of the height of the bounding box (defaulting

to 0.5, or 50%):

# Short arrow heads:

gd_feature_set.add_feature(feature, sigil="ARROW", color="blue", arrowhead_length=0.25)

# Or, longer arrow heads:

gd_feature_set.add_feature(feature, sigil="ARROW", color="orange", arrowhead_length=1)

# Or, very very long arrow heads (i.e. all head, no shaft, so triangles):

gd_feature_set.add_feature(feature, sigil="ARROW", color="red", arrowhead_length=10000)

The results are shown in Figure 17.6.
Biopython 1.61 adds a new BIGARROW sigil which always stradles the axis, pointing left for the reverse

strand or right otherwise:

# A large arrow straddling the axis:

gd_feature_set.add_feature(feature, sigil="BIGARROW")

All the shaft and arrow head options shown above for the ARROW sigil can be used for the BIGARROW sigil too.

17.1.9 A nice example

Now let’s return to the pPCP1 plasmid from Yersinia pestis biovar Microtus, and the top down approach
used in Section 17.1.3, but take advantage of the sigil options we’ve now discussed. This time we’ll use
arrows for the genes, and overlay them with strand-less features (as plain boxes) showing the position of
some restriction digest sites.
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Figure 17.4: Simple GenomeDiagram showing different sigils (see Section 17.1.7)
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Figure 17.5: Simple GenomeDiagram showing arrow shaft options (see Section 17.1.8)
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Figure 17.6: Simple GenomeDiagram showing arrow head options (see Section 17.1.8)
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from reportlab.lib import colors

from reportlab.lib.units import cm

from Bio.Graphics import GenomeDiagram

from Bio import SeqIO

from Bio.SeqFeature import SeqFeature, FeatureLocation

record = SeqIO.read("NC_005816.gb", "genbank")

gd_diagram = GenomeDiagram.Diagram(record.id)

gd_track_for_features = gd_diagram.new_track(1, name="Annotated Features")

gd_feature_set = gd_track_for_features.new_set()

for feature in record.features:

if feature.type != "gene":

# Exclude this feature

continue

if len(gd_feature_set) % 2 == 0:

color = colors.blue

else:

color = colors.lightblue

gd_feature_set.add_feature(

feature, sigil="ARROW", color=color, label=True, label_size=14, label_angle=0

)

# I want to include some strandless features, so for an example

# will use EcoRI recognition sites etc.

for site, name, color in [

("GAATTC", "EcoRI", colors.green),

("CCCGGG", "SmaI", colors.orange),

("AAGCTT", "HindIII", colors.red),

("GGATCC", "BamHI", colors.purple),

]:

index = 0

while True:

index = record.seq.find(site, start=index)

if index == -1:

break

feature = SeqFeature(FeatureLocation(index, index + len(site)))

gd_feature_set.add_feature(

feature,

color=color,

name=name,

label=True,

label_size=10,

label_color=color,

)

index += len(site)

gd_diagram.draw(format="linear", pagesize="A4", fragments=4, start=0, end=len(record))

gd_diagram.write("plasmid_linear_nice.pdf", "PDF")

gd_diagram.write("plasmid_linear_nice.eps", "EPS")
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gd_diagram.write("plasmid_linear_nice.svg", "SVG")

gd_diagram.draw(

format="circular",

circular=True,

pagesize=(20 * cm, 20 * cm),

start=0,

end=len(record),

circle_core=0.5,

)

gd_diagram.write("plasmid_circular_nice.pdf", "PDF")

gd_diagram.write("plasmid_circular_nice.eps", "EPS")

gd_diagram.write("plasmid_circular_nice.svg", "SVG")

The expected output is shown in Figures 17.7 and 17.8.

Figure 17.7: Linear diagram for Yersinia pestis biovar Microtus plasmid pPCP1 showing selected restriction
digest sites (see Section 17.1.9).

17.1.10 Multiple tracks

All the examples so far have used a single track, but you can have more than one track – for example show
the genes on one, and repeat regions on another. In this example we’re going to show three phage genomes
side by side to scale, inspired by Figure 6 in Proux et al. (2002) [5]. We’ll need the GenBank files for the
following three phage:

• NC_002703 – Lactococcus phage Tuc2009, complete genome (38347 bp)

288



Figure 17.8: Circular diagram for Yersinia pestis biovar Microtus plasmid pPCP1 showing selected restriction
digest sites (see Section 17.1.9).
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• AF323668 – Bacteriophage bIL285, complete genome (35538 bp)

• NC_003212 – Listeria innocua Clip11262, complete genome, of which we are focussing only on integrated
prophage 5 (similar length).

You can download these using Entrez if you like, see Section 9.6 for more details. For the third record
we’ve worked out where the phage is integrated into the genome, and slice the record to extract it (with the
features preserved, see Section 4.7), and must also reverse complement to match the orientation of the first
two phage (again preserving the features, see Section 4.9):

from Bio import SeqIO

A_rec = SeqIO.read("NC_002703.gbk", "gb")

B_rec = SeqIO.read("AF323668.gbk", "gb")

C_rec = SeqIO.read("NC_003212.gbk", "gb")[2587879:2625807].reverse_complement(name=True)

The figure we are imitating used different colors for different gene functions. One way to do this is to
edit the GenBank file to record color preferences for each feature - something Sanger’s Artemis editor does,
and which GenomeDiagram should understand. Here however, we’ll just hard code three lists of colors.

Note that the annotation in the GenBank files doesn’t exactly match that shown in Proux et al., they
have drawn some unannotated genes.

from reportlab.lib.colors import (

red,

grey,

orange,

green,

brown,

blue,

lightblue,

purple,

)

A_colors = (

[red] * 5

+ [grey] * 7

+ [orange] * 2

+ [grey] * 2

+ [orange]

+ [grey] * 11

+ [green] * 4

+ [grey]

+ [green] * 2

+ [grey, green]

+ [brown] * 5

+ [blue] * 4

+ [lightblue] * 5

+ [grey, lightblue]

+ [purple] * 2

+ [grey]

)

B_colors = (

[red] * 6
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+ [grey] * 8

+ [orange] * 2

+ [grey]

+ [orange]

+ [grey] * 21

+ [green] * 5

+ [grey]

+ [brown] * 4

+ [blue] * 3

+ [lightblue] * 3

+ [grey] * 5

+ [purple] * 2

)

C_colors = (

[grey] * 30

+ [green] * 5

+ [brown] * 4

+ [blue] * 2

+ [grey, blue]

+ [lightblue] * 2

+ [grey] * 5

)

Now to draw them – this time we add three tracks to the diagram, and also notice they are given different
start/end values to reflect their different lengths (this requires Biopython 1.59 or later).

from Bio.Graphics import GenomeDiagram

name = "Proux Fig 6"

gd_diagram = GenomeDiagram.Diagram(name)

max_len = 0

for record, gene_colors in zip([A_rec, B_rec, C_rec], [A_colors, B_colors, C_colors]):

max_len = max(max_len, len(record))

gd_track_for_features = gd_diagram.new_track(

1, name=record.name, greytrack=True, start=0, end=len(record)

)

gd_feature_set = gd_track_for_features.new_set()

i = 0

for feature in record.features:

if feature.type != "gene":

# Exclude this feature

continue

gd_feature_set.add_feature(

feature,

sigil="ARROW",

color=gene_colors[i],

label=True,

name=str(i + 1),

label_position="start",

label_size=6,

label_angle=0,
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)

i += 1

gd_diagram.draw(format="linear", pagesize="A4", fragments=1, start=0, end=max_len)

gd_diagram.write(name + ".pdf", "PDF")

gd_diagram.write(name + ".eps", "EPS")

gd_diagram.write(name + ".svg", "SVG")

The expected output is shown in Figure 17.9. I did wonder why in the original manuscript there were no

Figure 17.9: Linear diagram with three tracks for Lactococcus phage Tuc2009 (NC 002703), bacteriophage
bIL285 (AF323668), and prophage 5 from Listeria innocua Clip11262 (NC 003212) (see Section 17.1.10).

red or orange genes marked in the bottom phage. Another important point is here the phage are shown with
different lengths - this is because they are all drawn to the same scale (they are different lengths).

The key difference from the published figure is they have color-coded links between similar proteins –
which is what we will do in the next section.

17.1.11 Cross-Links between tracks

Biopython 1.59 added the ability to draw cross links between tracks - both simple linear diagrams as we will
show here, but also linear diagrams split into fragments and circular diagrams.
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Continuing the example from the previous section inspired by Figure 6 from Proux et al. 2002 [5], we
would need a list of cross links between pairs of genes, along with a score or color to use. Realistically you
might extract this from a BLAST file computationally, but here I have manually typed them in.

My naming convention continues to refer to the three phage as A, B and C. Here are the links we want
to show between A and B, given as a list of tuples (percentage similarity score, gene in A, gene in B).

# Tuc2009 (NC_002703) vs bIL285 (AF323668)

A_vs_B = [

(99, "Tuc2009_01", "int"),

(33, "Tuc2009_03", "orf4"),

(94, "Tuc2009_05", "orf6"),

(100, "Tuc2009_06", "orf7"),

(97, "Tuc2009_07", "orf8"),

(98, "Tuc2009_08", "orf9"),

(98, "Tuc2009_09", "orf10"),

(100, "Tuc2009_10", "orf12"),

(100, "Tuc2009_11", "orf13"),

(94, "Tuc2009_12", "orf14"),

(87, "Tuc2009_13", "orf15"),

(94, "Tuc2009_14", "orf16"),

(94, "Tuc2009_15", "orf17"),

(88, "Tuc2009_17", "rusA"),

(91, "Tuc2009_18", "orf20"),

(93, "Tuc2009_19", "orf22"),

(71, "Tuc2009_20", "orf23"),

(51, "Tuc2009_22", "orf27"),

(97, "Tuc2009_23", "orf28"),

(88, "Tuc2009_24", "orf29"),

(26, "Tuc2009_26", "orf38"),

(19, "Tuc2009_46", "orf52"),

(77, "Tuc2009_48", "orf54"),

(91, "Tuc2009_49", "orf55"),

(95, "Tuc2009_52", "orf60"),

]

Likewise for B and C:

# bIL285 (AF323668) vs Listeria innocua prophage 5 (in NC_003212)

B_vs_C = [

(42, "orf39", "lin2581"),

(31, "orf40", "lin2580"),

(49, "orf41", "lin2579"), # terL

(54, "orf42", "lin2578"), # portal

(55, "orf43", "lin2577"), # protease

(33, "orf44", "lin2576"), # mhp

(51, "orf46", "lin2575"),

(33, "orf47", "lin2574"),

(40, "orf48", "lin2573"),

(25, "orf49", "lin2572"),

(50, "orf50", "lin2571"),

(48, "orf51", "lin2570"),

(24, "orf52", "lin2568"),
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(30, "orf53", "lin2567"),

(28, "orf54", "lin2566"),

]

For the first and last phage these identifiers are locus tags, for the middle phage there are no locus tags
so I’ve used gene names instead. The following little helper function lets us lookup a feature using either a
locus tag or gene name:

def get_feature(features, id, tags=["locus_tag", "gene"]):

"""Search list of SeqFeature objects for an identifier under the given tags."""

for f in features:

for key in tags:

# tag may not be present in this feature

for x in f.qualifiers.get(key, []):

if x == id:

return f

raise KeyError(id)

We can now turn those list of identifier pairs into SeqFeature pairs, and thus find their location co-
ordinates. We can now add all that code and the following snippet to the previous example (just before the
gd_diagram.draw(...) line – see the finished example script Proux et al 2002 Figure 6.py included in the
Doc/examples folder of the Biopython source code) to add cross links to the figure:

from Bio.Graphics.GenomeDiagram import CrossLink

from reportlab.lib import colors

# Note it might have been clearer to assign the track numbers explicitly...

for rec_X, tn_X, rec_Y, tn_Y, X_vs_Y in [

(A_rec, 3, B_rec, 2, A_vs_B),

(B_rec, 2, C_rec, 1, B_vs_C),

]:

track_X = gd_diagram.tracks[tn_X]

track_Y = gd_diagram.tracks[tn_Y]

for score, id_X, id_Y in X_vs_Y:

feature_X = get_feature(rec_X.features, id_X)

feature_Y = get_feature(rec_Y.features, id_Y)

color = colors.linearlyInterpolatedColor(

colors.white, colors.firebrick, 0, 100, score

)

link_xy = CrossLink(

(track_X, feature_X.location.start, feature_X.location.end),

(track_Y, feature_Y.location.start, feature_Y.location.end),

color,

colors.lightgrey,

)

gd_diagram.cross_track_links.append(link_xy)

There are several important pieces to this code. First the GenomeDiagram object has a cross_track_links
attribute which is just a list of CrossLink objects. Each CrossLink object takes two sets of track-specific
co-ordinates (here given as tuples, you can alternatively use a GenomeDiagram.Feature object instead). You
can optionally supply a colour, border color, and say if this link should be drawn flipped (useful for showing
inversions).
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You can also see how we turn the BLAST percentage identity score into a colour, interpolating between
white (0%) and a dark red (100%). In this example we don’t have any problems with overlapping cross-
links. One way to tackle that is to use transparency in ReportLab, by using colors with their alpha channel
set. However, this kind of shaded color scheme combined with overlap transparency would be difficult to
interpret. The expected output is shown in Figure 17.10.

Figure 17.10: Linear diagram with three tracks for Lactococcus phage Tuc2009 (NC 002703), bacteriophage
bIL285 (AF323668), and prophage 5 from Listeria innocua Clip11262 (NC 003212) plus basic cross-links
shaded by percentage identity (see Section 17.1.11).

There is still a lot more that can be done within Biopython to help improve this figure. First of all, the
cross links in this case are between proteins which are drawn in a strand specific manor. It can help to add
a background region (a feature using the ‘BOX’ sigil) on the feature track to extend the cross link. Also, we
could reduce the vertical height of the feature tracks to allocate more to the links instead – one way to do that
is to allocate space for empty tracks. Furthermore, in cases like this where there are no large gene overlaps,
we can use the axis-straddling BIGARROW sigil, which allows us to further reduce the vertical space needed
for the track. These improvements are demonstrated in the example script Proux et al 2002 Figure 6.py
included in the Doc/examples folder of the Biopython source code. The expected output is shown in
Figure 17.11.

Beyond that, finishing touches you might want to do manually in a vector image editor include fine tuning
the placement of gene labels, and adding other custom annotation such as highlighting particular regions.

Although not really necessary in this example since none of the cross-links overlap, using a transparent
color in ReportLab is a very useful technique for superimposing multiple links. However, in this case a
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Figure 17.11: Linear diagram with three tracks for Lactococcus phage Tuc2009 (NC 002703), bacteriophage
bIL285 (AF323668), and prophage 5 from Listeria innocua Clip11262 (NC 003212) plus cross-links shaded
by percentage identity (see Section 17.1.11).
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shaded color scheme should be avoided.

17.1.12 Further options

You can control the tick marks to show the scale – after all every graph should show its units, and the
number of the grey-track labels.

Also, we have only used the FeatureSet so far. GenomeDiagram also has a GraphSet which can be
used for show line graphs, bar charts and heat plots (e.g. to show plots of GC% on a track parallel to the
features).

These options are not covered here yet, so for now we refer you to the User Guide (PDF) included with
the standalone version of GenomeDiagram (but please read the next section first), and the docstrings.

17.1.13 Converting old code

If you have old code written using the standalone version of GenomeDiagram, and you want to switch it
over to using the new version included with Biopython then you will have to make a few changes - most
importantly to your import statements.

Also, the older version of GenomeDiagram used only the UK spellings of color and center (colour and
centre). You will need to change to the American spellings, although for several years the Biopython version
of GenomeDiagram supported both.

For example, if you used to have:

from GenomeDiagram import GDFeatureSet, GDDiagram

gdd = GDDiagram("An example")

...

you could just switch the import statements like this:

from Bio.Graphics.GenomeDiagram import FeatureSet as GDFeatureSet, Diagram as GDDiagram

gdd = GDDiagram("An example")

...

and hopefully that should be enough. In the long term you might want to switch to the new names, but you
would have to change more of your code:

from Bio.Graphics.GenomeDiagram import FeatureSet, Diagram

gdd = Diagram("An example")

...

or:

from Bio.Graphics import GenomeDiagram

gdd = GenomeDiagram.Diagram("An example")

...

If you run into difficulties, please ask on the Biopython mailing list for advice. One catch is that we have
not included the old module GenomeDiagram.GDUtilities yet. This included a number of GC% related
functions, which will probably be merged under Bio.SeqUtils later on.
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17.2 Chromosomes

The Bio.Graphics.BasicChromosome module allows drawing of chromosomes. There is an example in Jupe
et al. (2012) [6] (open access) using colors to highlight different gene families.

17.2.1 Simple Chromosomes

Here is a very simple example - for which we’ll use Arabidopsis thaliana.
You can skip this bit, but first I downloaded the five sequenced chromosomes as five individual FASTA files

from the NCBI’s FTP site ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Arabidopsis_

thaliana/ and then parsed them with Bio.SeqIO to find out their lengths. You could use the GenBank
files for this (and the next example uses those for plotting features), but if all you want is the length it is
faster to use the FASTA files for the whole chromosomes:

from Bio import SeqIO

entries = [

("Chr I", "CHR_I/NC_003070.fna"),

("Chr II", "CHR_II/NC_003071.fna"),

("Chr III", "CHR_III/NC_003074.fna"),

("Chr IV", "CHR_IV/NC_003075.fna"),

("Chr V", "CHR_V/NC_003076.fna"),

]

for (name, filename) in entries:

record = SeqIO.read(filename, "fasta")

print(name, len(record))

This gave the lengths of the five chromosomes, which we’ll now use in the following short demonstration of
the BasicChromosome module:

from reportlab.lib.units import cm

from Bio.Graphics import BasicChromosome

entries = [

("Chr I", 30432563),

("Chr II", 19705359),

("Chr III", 23470805),

("Chr IV", 18585042),

("Chr V", 26992728),

]

max_len = 30432563 # Could compute this from the entries dict

telomere_length = 1000000 # For illustration

chr_diagram = BasicChromosome.Organism()

chr_diagram.page_size = (29.7 * cm, 21 * cm) # A4 landscape

for name, length in entries:

cur_chromosome = BasicChromosome.Chromosome(name)

# Set the scale to the MAXIMUM length plus the two telomeres in bp,

# want the same scale used on all five chromosomes so they can be

# compared to each other

cur_chromosome.scale_num = max_len + 2 * telomere_length
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Arabidopsis thaliana

Chr I Chr II Chr III Chr IV Chr V

Figure 17.12: Simple chromosome diagram for Arabidopsis thaliana.
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Figure 17.13: Chromosome diagram for Arabidopsis thaliana showing tRNA genes.
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# Add an opening telomere

start = BasicChromosome.TelomereSegment()

start.scale = telomere_length

cur_chromosome.add(start)

# Add a body - using bp as the scale length here.

body = BasicChromosome.ChromosomeSegment()

body.scale = length

cur_chromosome.add(body)

# Add a closing telomere

end = BasicChromosome.TelomereSegment(inverted=True)

end.scale = telomere_length

cur_chromosome.add(end)

# This chromosome is done

chr_diagram.add(cur_chromosome)

chr_diagram.draw("simple_chrom.pdf", "Arabidopsis thaliana")

This should create a very simple PDF file, shown in Figure 17.12. This example is deliberately short
and sweet. The next example shows the location of features of interest.

17.2.2 Annotated Chromosomes

Continuing from the previous example, let’s also show the tRNA genes. We’ll get their locations by parsing
the GenBank files for the five Arabidopsis thaliana chromosomes. You’ll need to download these files from the
NCBI FTP site ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Arabidopsis_thaliana/,
and preserve the subdirectory names or edit the paths below:

from reportlab.lib.units import cm

from Bio import SeqIO

from Bio.Graphics import BasicChromosome

entries = [

("Chr I", "CHR_I/NC_003070.gbk"),

("Chr II", "CHR_II/NC_003071.gbk"),

("Chr III", "CHR_III/NC_003074.gbk"),

("Chr IV", "CHR_IV/NC_003075.gbk"),

("Chr V", "CHR_V/NC_003076.gbk"),

]

max_len = 30432563 # Could compute this from the entries dict

telomere_length = 1000000 # For illustration

chr_diagram = BasicChromosome.Organism()

chr_diagram.page_size = (29.7 * cm, 21 * cm) # A4 landscape

for index, (name, filename) in enumerate(entries):

record = SeqIO.read(filename, "genbank")

length = len(record)
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features = [f for f in record.features if f.type == "tRNA"]

# Record an Artemis style integer color in the feature’s qualifiers,

# 1 = Black, 2 = Red, 3 = Green, 4 = blue, 5 =cyan, 6 = purple

for f in features:

f.qualifiers["color"] = [index + 2]

cur_chromosome = BasicChromosome.Chromosome(name)

# Set the scale to the MAXIMUM length plus the two telomeres in bp,

# want the same scale used on all five chromosomes so they can be

# compared to each other

cur_chromosome.scale_num = max_len + 2 * telomere_length

# Add an opening telomere

start = BasicChromosome.TelomereSegment()

start.scale = telomere_length

cur_chromosome.add(start)

# Add a body - again using bp as the scale length here.

body = BasicChromosome.AnnotatedChromosomeSegment(length, features)

body.scale = length

cur_chromosome.add(body)

# Add a closing telomere

end = BasicChromosome.TelomereSegment(inverted=True)

end.scale = telomere_length

cur_chromosome.add(end)

# This chromosome is done

chr_diagram.add(cur_chromosome)

chr_diagram.draw("tRNA_chrom.pdf", "Arabidopsis thaliana")

It might warn you about the labels being too close together - have a look at the forward strand (right
hand side) of Chr I, but it should create a colorful PDF file, shown in Figure 17.12.
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Chapter 18

KEGG

KEGG (https://www.kegg.jp/) is a database resource for understanding high-level functions and utilities
of the biological system, such as the cell, the organism and the ecosystem, from molecular-level informa-
tion, especially large-scale molecular datasets generated by genome sequencing and other high-throughput
experimental technologies.

Please note that the KEGG parser implementation in Biopython is incomplete. While the KEGG website
indicates many flat file formats, only parsers and writers for compound, enzyme, and map are currently
implemented. However, a generic parser is implemented to handle the other formats.

18.1 Parsing KEGG records

Parsing a KEGG record is as simple as using any other file format parser in Biopython. (Before running the
following codes, please open http://rest.kegg.jp/get/ec:5.4.2.2 with your web browser and save it as
ec_5.4.2.2.txt.)

>>> from Bio.KEGG import Enzyme

>>> records = Enzyme.parse(open("ec_5.4.2.2.txt"))

>>> record = list(records)[0]

>>> record.classname

[’Isomerases;’, ’Intramolecular transferases;’, ’Phosphotransferases (phosphomutases)’]

>>> record.entry

’5.4.2.2’

Alternatively, if the input KEGG file has exactly one entry, you can use read:

>>> from Bio.KEGG import Enzyme

>>> record = Enzyme.read(open("ec_5.4.2.2.txt"))

>>> record.classname

[’Isomerases;’, ’Intramolecular transferases;’, ’Phosphotransferases (phosphomutases)’]

>>> record.entry

’5.4.2.2’

The following section will shows how to download the above enzyme using the KEGG api as well as how
to use the generic parser with data that does not have a custom parser implemented.

18.2 Querying the KEGG API

Biopython has full support for the querying of the KEGG api. Querying all KEGG endpoints are supported;
all methods documented by KEGG (https://www.kegg.jp/kegg/rest/keggapi.html) are supported. The
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interface has some validation of queries which follow rules defined on the KEGG site. However, invalid queries
which return a 400 or 404 must be handled by the user.

First, here is how to extend the above example by downloading the relevant enzyme and passing it
through the Enzyme parser.

>>> from Bio.KEGG import REST

>>> from Bio.KEGG import Enzyme

>>> request = REST.kegg_get("ec:5.4.2.2")

>>> open("ec_5.4.2.2.txt", "w").write(request.read())

>>> records = Enzyme.parse(open("ec_5.4.2.2.txt"))

>>> record = list(records)[0]

>>> record.classname

[’Isomerases;’, ’Intramolecular transferases;’, ’Phosphotransferases (phosphomutases)’]

>>> record.entry

’5.4.2.2’

Now, here’s a more realistic example which shows a combination of querying the KEGG API. This will
demonstrate how to extract a unique set of all human pathway gene symbols which relate to DNA repair.
The steps that need to be taken to do so are as follows. First, we need to get a list of all human pathways.
Secondly, we need to filter those for ones which relate to ”repair”. Lastly, we need to get a list of all the
gene symbols in all repair pathways.

from Bio.KEGG import REST

human_pathways = REST.kegg_list("pathway", "hsa").read()

# Filter all human pathways for repair pathways

repair_pathways = []

for line in human_pathways.rstrip().split("\n"):

entry, description = line.split("\t")

if "repair" in description:

repair_pathways.append(entry)

# Get the genes for pathways and add them to a list

repair_genes = []

for pathway in repair_pathways:

pathway_file = REST.kegg_get(pathway).read() # query and read each pathway

# iterate through each KEGG pathway file, keeping track of which section

# of the file we’re in, only read the gene in each pathway

current_section = None

for line in pathway_file.rstrip().split("\n"):

section = line[:12].strip() # section names are within 12 columns

if not section == "":

current_section = section

if current_section == "GENE":

gene_identifiers, gene_description = line[12:].split("; ")

gene_id, gene_symbol = gene_identifiers.split()

if not gene_symbol in repair_genes:

repair_genes.append(gene_symbol)
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print(

"There are %d repair pathways and %d repair genes. The genes are:"

% (len(repair_pathways), len(repair_genes))

)

print(", ".join(repair_genes))

The KEGG API wrapper is compatible with all endpoints. Usage is essentially replacing all slashes in
the url with commas and using that list as arguments to the corresponding method in the KEGG module.
Here are a few examples from the api documentation (https://www.kegg.jp/kegg/docs/keggapi.html).

/list/hsa:10458+ece:Z5100 -> REST.kegg_list(["hsa:10458", "ece:Z5100"])

/find/compound/300-310/mol_weight -> REST.kegg_find("compound", "300-310", "mol_weight")

/get/hsa:10458+ece:Z5100/aaseq -> REST.kegg_get(["hsa:10458", "ece:Z5100"], "aaseq")
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Chapter 19

Bio.phenotype: analyse phenotypic
data

This chapter gives an overview of the functionalities of the Bio.phenotype package included in Biopython.
The scope of this package is the analysis of phenotypic data, which means parsing and analysing growth
measurements of cell cultures. In its current state the package is focused on the analysis of high-throughput
phenotypic experiments produced by the Phenotype Microarray technology, but future developments may
include other platforms and formats.

19.1 Phenotype Microarrays

The Phenotype Microarray is a technology that measures the metabolism of bacterial and eukaryotic cells
on roughly 2000 chemicals, divided in twenty 96-well plates. The technology measures the reduction of
a tetrazolium dye by NADH, whose production by the cell is used as a proxy for cell metabolism; color
development due to the reduction of this dye is typically measured once every 15 minutes. When cells are
grown in a media that sustains cell metabolism, the recorded phenotypic data resembles a sigmoid growth
curve, from which a series of growth parameters can be retrieved.

19.1.1 Parsing Phenotype Microarray data

The Bio.phenotype package can parse two different formats of Phenotype Microarray data: the CSV (comma
separated values) files produced by the machine’s proprietary software and JSON files produced by analysis
software, like opm or DuctApe. The parser will return one or a generator of PlateRecord objects, depending
on whether the read or parse method is being used. You can test the parse function by using the Plates.csv
file provided with the Biopython source code.

>>> from Bio import phenotype

>>> for record in phenotype.parse("Plates.csv", "pm-csv"):

... print("%s %i" % (record.id, len(record)))

...

PM01 96

PM01 96

PM09 96

PM09 96

The parser returns a series of PlateRecord objects, each one containing a series of WellRecord objects
(holding each well’s experimental data) arranged in 8 rows and 12 columns; each row is indicated by a
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uppercase character from A to H, while columns are indicated by a two digit number, from 01 to 12. There
are several ways to access WellRecord objects from a PlateRecord objects:

Well identifier If you know the well identifier (row + column identifiers) you can access the desired well
directly.

>>> record["A02"]

Well plate coordinates The same well can be retrieved by using the row and columns numbers (0-based
index).

>>> from Bio import phenotype

>>> record = list(phenotype.parse("Plates.csv", "pm-csv"))[-1]

>>> print(record[0, 1].id)

A02

Row or column coordinates A series of WellRecord objects contiguous to each other in the plate can be
retrieved in bulk by using the python list slicing syntax on PlateRecord objects; rows and columns are
numbered with a 0-based index.

>>> print(record[0])

Plate ID: PM09

Well: 12

Rows: 1

Columns: 12

PlateRecord(’WellRecord[’A01’], WellRecord[’A02’], WellRecord[’A03’], ..., WellRecord[’A12’]’)

>>> print(record[:, 0])

Plate ID: PM09

Well: 8

Rows: 8

Columns: 1

PlateRecord(’WellRecord[’A01’], WellRecord[’B01’], WellRecord[’C01’], ..., WellRecord[’H01’]’)

>>> print(record[:3, :3])

Plate ID: PM09

Well: 9

Rows: 3

Columns: 3

PlateRecord(’WellRecord[’A01’], WellRecord[’A02’], WellRecord[’A03’], ..., WellRecord[’C03’]’)

19.1.2 Manipulating Phenotype Microarray data

19.1.2.1 Accessing raw data

The raw data extracted from the PM files is comprised of a series of tuples for each well, containing the
time (in hours) and the colorimetric measure (in arbitrary units). Usually the instrument collects data every
fifteen minutes, but that can vary between experiments. The raw data can be accessed by iterating on a
WellRecord object; in the example below only the first ten time points are shown.

>>> from Bio import phenotype

>>> record = list(phenotype.parse("Plates.csv", "pm-csv"))[-1]

>>> well = record["A02"]

>>> for time, signal in well:

... print(time, signal)
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...

(0.0, 12.0)

(0.25, 18.0)

(0.5, 27.0)

(0.75, 35.0)

(1.0, 37.0)

(1.25, 41.0)

(1.5, 44.0)

(1.75, 44.0)

(2.0, 44.0)

(2.25, 44.0)

[...]

This method, while providing a way to access the raw data, doesn’t allow a direct comparison between
different WellRecord objects, which may have measurements at different time points.

19.1.2.2 Accessing interpolated data

To make it easier to compare different experiments and in general to allow a more intuitive handling of
the phenotypic data, the module allows to define a custom slicing of the time points that are present in
the WellRecord object. Colorimetric data for time points that have not been directly measured are derived
through a linear interpolation of the available data, otherwise a NaN is returned. This method only works
in the time interval where actual data is available. Time intervals can be defined with the same syntax as
list indexing; the default time interval is therefore one hour.

>>> well[:10]

[12.0, 37.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

Different time intervals can be used, for instance five minutes:

>>> well[63:64:0.083]

[12.0, 37.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

>>> well[9.55]

44.0

>>> well[63.33:73.33]

[113.31999999999999,

117.0,

120.31999999999999,

128.0,

129.63999999999999,

132.95999999999998,

136.95999999999998,

140.0,

142.0,

nan]

19.1.2.3 Control well subtraction

Many Phenotype Microarray plates contain a control well (usually A01), that is a well where the media
shouldn’t support any growth; the low signal produced by this well can be subtracted from the other wells.
The PlateRecord objects have a dedicated function for that, which returns another PlateRecord object with
the corrected data.
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>>> corrected = record.subtract_control(control="A01")

>>> record["A01"][63]

336.0

>>> corrected["A01"][63]

0.0

19.1.2.4 Parameters extraction

Those wells where metabolic activity is observed show a sigmoid behavior for the colorimetric data. To allow
an easier way to compare different experiments a sigmoid curve can be fitted onto the data, so that a series
of summary parameters can be extracted and used for comparisons. The parameters that can be extracted
from the curve are:

• Minimum (min) and maximum (max) signal;

• Average height (average height);

• Area under the curve (area);

• Curve plateau point (plateau);

• Curve slope during exponential metabolic activity (slope);

• Curve lag time (lag).

All the parameters (except min, max and average height) require the scipy library to be installed.
The fit function uses three sigmoid functions:

Gompertz Ae−e
(
µme
A

(λ−t)+1)

+ y0

Logistic A

1+e
(
4µm
A

(λ−t)+2)
+ y0

Richards A(1 + ve1+v + e
µm
A (1+v)(1+ 1

v )(λ−t))−
1
v + y0

Where:

A corresponds to the plateau

µm corresponds to the slope

λ corresponds to the lag

These functions have been derived from this publication. The fit method by default tries first to fit the
gompertz function: if it fails it will then try to fit the logistic and then the richards function. The user can
also specify one of the three functions to be applied.

>>> from Bio import phenotype

>>> record = list(phenotype.parse("Plates.csv", "pm-csv"))[-1]

>>> well = record["A02"]

>>> well.fit()

>>> print("Function fitted: %s" % well.model)

Function fitted: gompertz

>>> for param in ["area", "average_height", "lag", "max", "min",

... "plateau", "slope"]:

... print("%s\t%.2f" % (param, getattr(well, param)))

...
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area 4414.38

average_height 61.58

lag 48.60

max 143.00

min 12.00

plateau 120.02

slope 4.99

19.1.3 Writing Phenotype Microarray data

PlateRecord objects can be written to file in the form of JSON files, a format compatible with other software
packages such as opm or DuctApe.

>>> phenotype.write(record, "out.json", "pm-json")

1
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Chapter 20

Cookbook – Cool things to do with it

Biopython now has two collections of “cookbook” examples – this chapter (which has been included in this
tutorial for many years and has gradually grown), and http://biopython.org/wiki/Category:Cookbook

which is a user contributed collection on our wiki.
We’re trying to encourage Biopython users to contribute their own examples to the wiki. In addition to

helping the community, one direct benefit of sharing an example like this is that you could also get some
feedback on the code from other Biopython users and developers - which could help you improve all your
Python code.

In the long term, we may end up moving all of the examples in this chapter to the wiki, or elsewhere
within the tutorial.

20.1 Working with sequence files

This section shows some more examples of sequence input/output, using the Bio.SeqIO module described
in Chapter 5.

20.1.1 Filtering a sequence file

Often you’ll have a large file with many sequences in it (e.g. FASTA file or genes, or a FASTQ or SFF file
of reads), a separate shorter list of the IDs for a subset of sequences of interest, and want to make a new
sequence file for this subset.

Let’s say the list of IDs is in a simple text file, as the first word on each line. This could be a tabular file
where the first column is the ID. Try something like this:

from Bio import SeqIO

input_file = "big_file.sff"

id_file = "short_list.txt"

output_file = "short_list.sff"

with open(id_file) as id_handle:

wanted = set(line.rstrip("\n").split(None, 1)[0] for line in id_handle)

print("Found %i unique identifiers in %s" % (len(wanted), id_file))

records = (r for r in SeqIO.parse(input_file, "sff") if r.id in wanted)

count = SeqIO.write(records, output_file, "sff")

print("Saved %i records from %s to %s" % (count, input_file, output_file))
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if count < len(wanted):

print("Warning %i IDs not found in %s" % (len(wanted) - count, input_file))

Note that we use a Python set rather than a list, this makes testing membership faster.
As discussed in Section 5.6, for a large FASTA or FASTQ file for speed you would be better off not using

the high-level SeqIO interface, but working directly with strings. This next example shows how to do this
with FASTQ files – it is more complicated:

from Bio.SeqIO.QualityIO import FastqGeneralIterator

input_file = "big_file.fastq"

id_file = "short_list.txt"

output_file = "short_list.fastq"

with open(id_file) as id_handle:

# Taking first word on each line as an identifer

wanted = set(line.rstrip("\n").split(None, 1)[0] for line in id_handle)

print("Found %i unique identifiers in %s" % (len(wanted), id_file))

with open(input_file) as in_handle:

with open(output_file, "w") as out_handle:

for title, seq, qual in FastqGeneralIterator(in_handle):

# The ID is the first word in the title line (after the @ sign):

if title.split(None, 1)[0] in wanted:

# This produces a standard 4-line FASTQ entry:

out_handle.write("@%s\n%s\n+\n%s\n" % (title, seq, qual))

count += 1

print("Saved %i records from %s to %s" % (count, input_file, output_file))

if count < len(wanted):

print("Warning %i IDs not found in %s" % (len(wanted) - count, input_file))

20.1.2 Producing randomised genomes

Let’s suppose you are looking at genome sequence, hunting for some sequence feature – maybe extreme local
GC% bias, or possible restriction digest sites. Once you’ve got your Python code working on the real genome
it may be sensible to try running the same search on randomised versions of the same genome for statistical
analysis (after all, any “features” you’ve found could just be there just by chance).

For this discussion, we’ll use the GenBank file for the pPCP1 plasmid from Yersinia pestis biovar Microtus.
The file is included with the Biopython unit tests under the GenBank folder, or you can get it from our
website, NC 005816.gb. This file contains one and only one record, so we can read it in as a SeqRecord

using the Bio.SeqIO.read() function:

>>> from Bio import SeqIO

>>> original_rec = SeqIO.read("NC_005816.gb", "genbank")

So, how can we generate a shuffled versions of the original sequence? I would use the built in Python
random module for this, in particular the function random.shuffle – but this works on a Python list. Our
sequence is a Seq object, so in order to shuffle it we need to turn it into a list:

>>> import random

>>> nuc_list = list(original_rec.seq)

>>> random.shuffle(nuc_list) # acts in situ!
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Now, in order to use Bio.SeqIO to output the shuffled sequence, we need to construct a new SeqRecord

with a new Seq object using this shuffled list. In order to do this, we need to turn the list of nucleotides
(single letter strings) into a long string – the standard Python way to do this is with the string object’s join
method.

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> shuffled_rec = SeqRecord(Seq("".join(nuc_list), original_rec.seq.alphabet),

... id="Shuffled", description="Based on %s" % original_rec.id)

...

Let’s put all these pieces together to make a complete Python script which generates a single FASTA file
containing 30 randomly shuffled versions of the original sequence.

This first version just uses a big for loop and writes out the records one by one (using the SeqRecord’s
format method described in Section 5.5.4):

import random

from Bio.Seq import Seq

from Bio.SeqRecord import SeqRecord

from Bio import SeqIO

original_rec = SeqIO.read("NC_005816.gb", "genbank")

with open("shuffled.fasta", "w") as output_handle:

for i in range(30):

nuc_list = list(original_rec.seq)

random.shuffle(nuc_list)

shuffled_rec = SeqRecord(

Seq("".join(nuc_list), original_rec.seq.alphabet),

id="Shuffled%i" % (i + 1),

description="Based on %s" % original_rec.id,

)

out_handle.write(shuffled_rec.format("fasta"))

Personally I prefer the following version using a function to shuffle the record and a generator expression
instead of the for loop:

import random

from Bio.Seq import Seq

from Bio.SeqRecord import SeqRecord

from Bio import SeqIO

def make_shuffle_record(record, new_id):

nuc_list = list(record.seq)

random.shuffle(nuc_list)

return SeqRecord(

Seq("".join(nuc_list), record.seq.alphabet),

id=new_id,

description="Based on %s" % original_rec.id,

)
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original_rec = SeqIO.read("NC_005816.gb", "genbank")

shuffled_recs = (

make_shuffle_record(original_rec, "Shuffled%i" % (i + 1)) for i in range(30)

)

SeqIO.write(shuffled_recs, "shuffled.fasta", "fasta")

20.1.3 Translating a FASTA file of CDS entries

Suppose you’ve got an input file of CDS entries for some organism, and you want to generate a new FASTA
file containing their protein sequences. i.e. Take each nucleotide sequence from the original file, and translate
it. Back in Section 3.9 we saw how to use the Seq object’s translate method, and the optional cds argument
which enables correct translation of alternative start codons.

We can combine this with Bio.SeqIO as shown in the reverse complement example in Section 5.5.3. The
key point is that for each nucleotide SeqRecord, we need to create a protein SeqRecord - and take care of
naming it.

You can write you own function to do this, choosing suitable protein identifiers for your sequences, and
the appropriate genetic code. In this example we just use the default table and add a prefix to the identifier:

from Bio.SeqRecord import SeqRecord

def make_protein_record(nuc_record):

"""Returns a new SeqRecord with the translated sequence (default table)."""

return SeqRecord(

seq=nuc_record.seq.translate(cds=True),

id="trans_" + nuc_record.id,

description="translation of CDS, using default table",

)

We can then use this function to turn the input nucleotide records into protein records ready for output.
An elegant way and memory efficient way to do this is with a generator expression:

from Bio import SeqIO

proteins = (

make_protein_record(nuc_rec)

for nuc_rec in SeqIO.parse("coding_sequences.fasta", "fasta")

)

SeqIO.write(proteins, "translations.fasta", "fasta")

This should work on any FASTA file of complete coding sequences. If you are working on partial coding
sequences, you may prefer to use nuc_record.seq.translate(to_stop=True) in the example above, as this
wouldn’t check for a valid start codon etc.

20.1.4 Making the sequences in a FASTA file upper case

Often you’ll get data from collaborators as FASTA files, and sometimes the sequences can be in a mixture of
upper and lower case. In some cases this is deliberate (e.g. lower case for poor quality regions), but usually
it is not important. You may want to edit the file to make everything consistent (e.g. all upper case), and
you can do this easily using the upper() method of the SeqRecord object (added in Biopython 1.55):

from Bio import SeqIO
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records = (rec.upper() for rec in SeqIO.parse("mixed.fas", "fasta"))

count = SeqIO.write(records, "upper.fas", "fasta")

print("Converted %i records to upper case" % count)

How does this work? The first line is just importing the Bio.SeqIO module. The second line is the
interesting bit – this is a Python generator expression which gives an upper case version of each record parsed
from the input file (mixed.fas). In the third line we give this generator expression to the Bio.SeqIO.write()
function and it saves the new upper cases records to our output file (upper.fas).

The reason we use a generator expression (rather than a list or list comprehension) is this means only
one record is kept in memory at a time. This can be really important if you are dealing with large files with
millions of entries.

20.1.5 Sorting a sequence file

Suppose you wanted to sort a sequence file by length (e.g. a set of contigs from an assembly), and you are
working with a file format like FASTA or FASTQ which Bio.SeqIO can read, write (and index).

If the file is small enough, you can load it all into memory at once as a list of SeqRecord objects, sort
the list, and save it:

from Bio import SeqIO

records = list(SeqIO.parse("ls_orchid.fasta", "fasta"))

records.sort(key=lambda r: len(r))

SeqIO.write(records, "sorted_orchids.fasta", "fasta")

The only clever bit is specifying a comparison method for how to sort the records (here we sort them by
length). If you wanted the longest records first, you could flip the comparison or use the reverse argument:

from Bio import SeqIO

records = list(SeqIO.parse("ls_orchid.fasta", "fasta"))

records.sort(key=lambda r: -len(r))

SeqIO.write(records, "sorted_orchids.fasta", "fasta")

Now that’s pretty straight forward - but what happens if you have a very large file and you can’t load it
all into memory like this? For example, you might have some next-generation sequencing reads to sort by
length. This can be solved using the Bio.SeqIO.index() function.

from Bio import SeqIO

# Get the lengths and ids, and sort on length

len_and_ids = sorted(

(len(rec), rec.id) for rec in SeqIO.parse("ls_orchid.fasta", "fasta")

)

ids = reversed([id for (length, id) in len_and_ids])

del len_and_ids # free this memory

record_index = SeqIO.index("ls_orchid.fasta", "fasta")

records = (record_index[id] for id in ids)

SeqIO.write(records, "sorted.fasta", "fasta")

First we scan through the file once using Bio.SeqIO.parse(), recording the record identifiers and their
lengths in a list of tuples. We then sort this list to get them in length order, and discard the lengths. Using
this sorted list of identifiers Bio.SeqIO.index() allows us to retrieve the records one by one, and we pass
them to Bio.SeqIO.write() for output.
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These examples all use Bio.SeqIO to parse the records into SeqRecord objects which are output using
Bio.SeqIO.write(). What if you want to sort a file format which Bio.SeqIO.write() doesn’t support,
like the plain text SwissProt format? Here is an alternative solution using the get_raw() method added to
Bio.SeqIO.index() in Biopython 1.54 (see Section 5.4.2.2).

from Bio import SeqIO

# Get the lengths and ids, and sort on length

len_and_ids = sorted(

(len(rec), rec.id) for rec in SeqIO.parse("ls_orchid.fasta", "fasta")

)

ids = reversed([id for (length, id) in len_and_ids])

del len_and_ids # free this memory

record_index = SeqIO.index("ls_orchid.fasta", "fasta")

with open("sorted.fasta", "wb") as out_handle:

for id in ids:

out_handle.write(record_index.get_raw(id))

Note with Python 3 onwards, we have to open the file for writing in binary mode because the get_raw()

method returns bytes strings.
As a bonus, because it doesn’t parse the data into SeqRecord objects a second time it should be faster.

If you only want to use this with FASTA format, we can speed this up one step further by using the low-level
FASTA parser to get the record identifiers and lengths:

from Bio.SeqIO.FastaIO import SimpleFastaParser

from Bio import SeqIO

# Get the lengths and ids, and sort on length

with open("ls_orchid.fasta") as in_handle:

len_and_ids = sorted(

(len(seq), title.split(None, 1)[0])

for title, seq in SimpleFastaParser(in_handle)

)

ids = reversed([id for (length, id) in len_and_ids])

del len_and_ids # free this memory

record_index = SeqIO.index("ls_orchid.fasta", "fasta")

with open("sorted.fasta", "wb") as out_handle:

for id in ids:

out_handle.write(record_index.get_raw(id))

20.1.6 Simple quality filtering for FASTQ files

The FASTQ file format was introduced at Sanger and is now widely used for holding nucleotide sequencing
reads together with their quality scores. FASTQ files (and the related QUAL files) are an excellent example
of per-letter-annotation, because for each nucleotide in the sequence there is an associated quality score.
Any per-letter-annotation is held in a SeqRecord in the letter_annotations dictionary as a list, tuple or
string (with the same number of elements as the sequence length).

One common task is taking a large set of sequencing reads and filtering them (or cropping them) based
on their quality scores. The following example is very simplistic, but should illustrate the basics of working
with quality data in a SeqRecord object. All we are going to do here is read in a file of FASTQ data, and
filter it to pick out only those records whose PHRED quality scores are all above some threshold (here 20).
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For this example we’ll use some real data downloaded from the ENA sequence read archive, ftp://ftp.
sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz (2MB) which unzips to a 19MB file
SRR020192.fastq. This is some Roche 454 GS FLX single end data from virus infected California sea lions
(see https://www.ebi.ac.uk/ena/data/view/SRS004476 for details).

First, let’s count the reads:

from Bio import SeqIO

count = 0

for rec in SeqIO.parse("SRR020192.fastq", "fastq"):

count += 1

print("%i reads" % count)

Now let’s do a simple filtering for a minimum PHRED quality of 20:

from Bio import SeqIO

good_reads = (

rec

for rec in SeqIO.parse("SRR020192.fastq", "fastq")

if min(rec.letter_annotations["phred_quality"]) >= 20

)

count = SeqIO.write(good_reads, "good_quality.fastq", "fastq")

print("Saved %i reads" % count)

This pulled out only 14580 reads out of the 41892 present. A more sensible thing to do would be to quality
trim the reads, but this is intended as an example only.

FASTQ files can contain millions of entries, so it is best to avoid loading them all into memory at once.
This example uses a generator expression, which means only one SeqRecord is created at a time - avoiding
any memory limitations.

Note that it would be faster to use the low-level FastqGeneralIterator parser here (see Section 5.6),
but that does not turn the quality string into integer scores.

20.1.7 Trimming off primer sequences

For this example we’re going to pretend that GATGACGGTGT is a 5’ primer sequence we want to look for in
some FASTQ formatted read data. As in the example above, we’ll use the SRR020192.fastq file downloaded
from the ENA (ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz).

By using the main Bio.SeqIO interface, the same approach would work with any other supported file for-
mat (e.g. FASTA files). However, for large FASTQ files it would be faster the low-level FastqGeneralIterator
parser here (see the earlier example, and Section 5.6).

This code uses Bio.SeqIO with a generator expression (to avoid loading all the sequences into memory
at once), and the Seq object’s startswith method to see if the read starts with the primer sequence:

from Bio import SeqIO

primer_reads = (

rec

for rec in SeqIO.parse("SRR020192.fastq", "fastq")

if rec.seq.startswith("GATGACGGTGT")

)

count = SeqIO.write(primer_reads, "with_primer.fastq", "fastq")

print("Saved %i reads" % count)
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That should find 13819 reads from SRR014849.fastq and save them to a new FASTQ file, with primer.fastq.
Now suppose that instead you wanted to make a FASTQ file containing these reads but with the primer

sequence removed? That’s just a small change as we can slice the SeqRecord (see Section 4.7) to remove the
first eleven letters (the length of our primer):

from Bio import SeqIO

trimmed_primer_reads = (

rec[11:]

for rec in SeqIO.parse("SRR020192.fastq", "fastq")

if rec.seq.startswith("GATGACGGTGT")

)

count = SeqIO.write(trimmed_primer_reads, "with_primer_trimmed.fastq", "fastq")

print("Saved %i reads" % count)

Again, that should pull out the 13819 reads from SRR020192.fastq, but this time strip off the first ten
characters, and save them to another new FASTQ file, with primer trimmed.fastq.

Now, suppose you want to create a new FASTQ file where these reads have their primer removed, but all
the other reads are kept as they were? If we want to still use a generator expression, it is probably clearest
to define our own trim function:

from Bio import SeqIO

def trim_primer(record, primer):

if record.seq.startswith(primer):

return record[len(primer) :]

else:

return record

trimmed_reads = (

trim_primer(record, "GATGACGGTGT")

for record in SeqIO.parse("SRR020192.fastq", "fastq")

)

count = SeqIO.write(trimmed_reads, "trimmed.fastq", "fastq")

print("Saved %i reads" % count)

This takes longer, as this time the output file contains all 41892 reads. Again, we’re used a generator
expression to avoid any memory problems. You could alternatively use a generator function rather than a
generator expression.

from Bio import SeqIO

def trim_primers(records, primer):

"""Removes perfect primer sequences at start of reads.

This is a generator function, the records argument should

be a list or iterator returning SeqRecord objects.

"""

len_primer = len(primer) # cache this for later

for record in records:
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if record.seq.startswith(primer):

yield record[len_primer:]

else:

yield record

original_reads = SeqIO.parse("SRR020192.fastq", "fastq")

trimmed_reads = trim_primers(original_reads, "GATGACGGTGT")

count = SeqIO.write(trimmed_reads, "trimmed.fastq", "fastq")

print("Saved %i reads" % count)

This form is more flexible if you want to do something more complicated where only some of the records
are retained – as shown in the next example.

20.1.8 Trimming off adaptor sequences

This is essentially a simple extension to the previous example. We are going to going to pretend GATGACGGTGT

is an adaptor sequence in some FASTQ formatted read data, again the SRR020192.fastq file from the NCBI
(ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz).

This time however, we will look for the sequence anywhere in the reads, not just at the very beginning:

from Bio import SeqIO

def trim_adaptors(records, adaptor):

"""Trims perfect adaptor sequences.

This is a generator function, the records argument should

be a list or iterator returning SeqRecord objects.

"""

len_adaptor = len(adaptor) # cache this for later

for record in records:

index = record.seq.find(adaptor)

if index == -1:

# adaptor not found, so won’t trim

yield record

else:

# trim off the adaptor

yield record[index + len_adaptor :]

original_reads = SeqIO.parse("SRR020192.fastq", "fastq")

trimmed_reads = trim_adaptors(original_reads, "GATGACGGTGT")

count = SeqIO.write(trimmed_reads, "trimmed.fastq", "fastq")

print("Saved %i reads" % count)

Because we are using a FASTQ input file in this example, the SeqRecord objects have per-letter-
annotation for the quality scores. By slicing the SeqRecord object the appropriate scores are used on
the trimmed records, so we can output them as a FASTQ file too.

Compared to the output of the previous example where we only looked for a primer/adaptor at the start
of each read, you may find some of the trimmed reads are quite short after trimming (e.g. if the adaptor
was found in the middle rather than near the start). So, let’s add a minimum length requirement as well:
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from Bio import SeqIO

def trim_adaptors(records, adaptor, min_len):

"""Trims perfect adaptor sequences, checks read length.

This is a generator function, the records argument should

be a list or iterator returning SeqRecord objects.

"""

len_adaptor = len(adaptor) # cache this for later

for record in records:

len_record = len(record) # cache this for later

if len(record) < min_len:

# Too short to keep

continue

index = record.seq.find(adaptor)

if index == -1:

# adaptor not found, so won’t trim

yield record

elif len_record - index - len_adaptor >= min_len:

# after trimming this will still be long enough

yield record[index + len_adaptor :]

original_reads = SeqIO.parse("SRR020192.fastq", "fastq")

trimmed_reads = trim_adaptors(original_reads, "GATGACGGTGT", 100)

count = SeqIO.write(trimmed_reads, "trimmed.fastq", "fastq")

print("Saved %i reads" % count)

By changing the format names, you could apply this to FASTA files instead. This code also could be
extended to do a fuzzy match instead of an exact match (maybe using a pairwise alignment, or taking into
account the read quality scores), but that will be much slower.

20.1.9 Converting FASTQ files

Back in Section 5.5.2 we showed how to use Bio.SeqIO to convert between two file formats. Here we’ll go
into a little more detail regarding FASTQ files which are used in second generation DNA sequencing. Please
refer to Cock et al. (2009) [7] for a longer description. FASTQ files store both the DNA sequence (as a
string) and the associated read qualities.

PHRED scores (used in most FASTQ files, and also in QUAL files, ACE files and SFF files) have become
a de facto standard for representing the probability of a sequencing error (here denoted by Pe) at a given
base using a simple base ten log transformation:

QPHRED = −10× log10(Pe) (20.1)

This means a wrong read (Pe = 1) gets a PHRED quality of 0, while a very good read like Pe = 0.00001
gets a PHRED quality of 50. While for raw sequencing data qualities higher than this are rare, with post
processing such as read mapping or assembly, qualities of up to about 90 are possible (indeed, the MAQ tool
allows for PHRED scores in the range 0 to 93 inclusive).

The FASTQ format has the potential to become a de facto standard for storing the letters and quality
scores for a sequencing read in a single plain text file. The only fly in the ointment is that there are at least
three versions of the FASTQ format which are incompatible and difficult to distinguish...
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1. The original Sanger FASTQ format uses PHRED qualities encoded with an ASCII offset of 33. The
NCBI are using this format in their Short Read Archive. We call this the fastq (or fastq-sanger)
format in Bio.SeqIO.

2. Solexa (later bought by Illumina) introduced their own version using Solexa qualities encoded with an
ASCII offset of 64. We call this the fastq-solexa format.

3. Illumina pipeline 1.3 onwards produces FASTQ files with PHRED qualities (which is more consistent),
but encoded with an ASCII offset of 64. We call this the fastq-illumina format.

The Solexa quality scores are defined using a different log transformation:

QSolexa = −10× log10

(
Pe

1− Pe

)
(20.2)

Given Solexa/Illumina have now moved to using PHRED scores in version 1.3 of their pipeline, the
Solexa quality scores will gradually fall out of use. If you equate the error estimates (Pe) these two equations
allow conversion between the two scoring systems - and Biopython includes functions to do this in the
Bio.SeqIO.QualityIO module, which are called if you use Bio.SeqIO to convert an old Solexa/Illumina file
into a standard Sanger FASTQ file:

from Bio import SeqIO

SeqIO.convert("solexa.fastq", "fastq-solexa", "standard.fastq", "fastq")

If you want to convert a new Illumina 1.3+ FASTQ file, all that gets changed is the ASCII offset because
although encoded differently the scores are all PHRED qualities:

from Bio import SeqIO

SeqIO.convert("illumina.fastq", "fastq-illumina", "standard.fastq", "fastq")

Note that using Bio.SeqIO.convert() like this is much faster than combining Bio.SeqIO.parse() and
Bio.SeqIO.write() because optimised code is used for converting between FASTQ variants (and also for
FASTQ to FASTA conversion).

For good quality reads, PHRED and Solexa scores are approximately equal, which means since both the
fasta-solexa and fastq-illumina formats use an ASCII offset of 64 the files are almost the same. This
was a deliberate design choice by Illumina, meaning applications expecting the old fasta-solexa style files
will probably be OK using the newer fastq-illumina files (on good data). Of course, both variants are
very different from the original FASTQ standard as used by Sanger, the NCBI, and elsewhere (format name
fastq or fastq-sanger).

For more details, see the built in help (also online):

>>> from Bio.SeqIO import QualityIO

>>> help(QualityIO)

...

20.1.10 Converting FASTA and QUAL files into FASTQ files

FASTQ files hold both sequences and their quality strings. FASTA files hold just sequences, while QUAL
files hold just the qualities. Therefore a single FASTQ file can be converted to or from paired FASTA and
QUAL files.

Going from FASTQ to FASTA is easy:
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from Bio import SeqIO

SeqIO.convert("example.fastq", "fastq", "example.fasta", "fasta")

Going from FASTQ to QUAL is also easy:

from Bio import SeqIO

SeqIO.convert("example.fastq", "fastq", "example.qual", "qual")

However, the reverse is a little more tricky. You can use Bio.SeqIO.parse() to iterate over the records
in a single file, but in this case we have two input files. There are several strategies possible, but assuming
that the two files are really paired the most memory efficient way is to loop over both together. The code
is a little fiddly, so we provide a function called PairedFastaQualIterator in the Bio.SeqIO.QualityIO

module to do this. This takes two handles (the FASTA file and the QUAL file) and returns a SeqRecord

iterator:

from Bio.SeqIO.QualityIO import PairedFastaQualIterator

for record in PairedFastaQualIterator(open("example.fasta"), open("example.qual")):

print(record)

This function will check that the FASTA and QUAL files are consistent (e.g. the records are in the same
order, and have the same sequence length). You can combine this with the Bio.SeqIO.write() function to
convert a pair of FASTA and QUAL files into a single FASTQ files:

from Bio import SeqIO

from Bio.SeqIO.QualityIO import PairedFastaQualIterator

with open("example.fasta") as f_handle, open("example.qual") as q_handle:

records = PairedFastaQualIterator(f_handle, q_handle)

count = SeqIO.write(records, "temp.fastq", "fastq")

print("Converted %i records" % count)

20.1.11 Indexing a FASTQ file

FASTQ files are usually very large, with millions of reads in them. Due to the sheer amount of data, you
can’t load all the records into memory at once. This is why the examples above (filtering and trimming)
iterate over the file looking at just one SeqRecord at a time.

However, sometimes you can’t use a big loop or an iterator - you may need random access to the reads.
Here the Bio.SeqIO.index() function may prove very helpful, as it allows you to access any read in the
FASTQ file by its name (see Section 5.4.2).

Again we’ll use the SRR020192.fastq file from the ENA (ftp://ftp.sra.ebi.ac.uk/vol1/fastq/
SRR020/SRR020192/SRR020192.fastq.gz), although this is actually quite a small FASTQ file with less
than 50, 000 reads:

>>> from Bio import SeqIO

>>> fq_dict = SeqIO.index("SRR020192.fastq", "fastq")

>>> len(fq_dict)

41892

>>> fq_dict.keys()[:4]

[’SRR020192.38240’, ’SRR020192.23181’, ’SRR020192.40568’, ’SRR020192.23186’]

>>> fq_dict["SRR020192.23186"].seq

Seq(’GTCCCAGTATTCGGATTTGTCTGCCAAAACAATGAAATTGACACAGTTTACAAC...CCG’, SingleLetterAlphabet())
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When testing this on a FASTQ file with seven million reads, indexing took about a minute, but record
access was almost instant.

The sister function Bio.SeqIO.index_db() lets you save the index to an SQLite3 database file for near
instantaneous reuse - see Section 5.4.2 for more details.

The example in Section 20.1.5 show how you can use the Bio.SeqIO.index() function to sort a large
FASTA file – this could also be used on FASTQ files.

20.1.12 Converting SFF files

If you work with 454 (Roche) sequence data, you will probably have access to the raw data as a Standard
Flowgram Format (SFF) file. This contains the sequence reads (called bases) with quality scores and the
original flow information.

A common task is to convert from SFF to a pair of FASTA and QUAL files, or to a single FASTQ file.
These operations are trivial using the Bio.SeqIO.convert() function (see Section 5.5.2):

>>> from Bio import SeqIO

>>> SeqIO.convert("E3MFGYR02_random_10_reads.sff", "sff", "reads.fasta", "fasta")

10

>>> SeqIO.convert("E3MFGYR02_random_10_reads.sff", "sff", "reads.qual", "qual")

10

>>> SeqIO.convert("E3MFGYR02_random_10_reads.sff", "sff", "reads.fastq", "fastq")

10

Remember the convert function returns the number of records, in this example just ten. This will give you
the untrimmed reads, where the leading and trailing poor quality sequence or adaptor will be in lower case.
If you want the trimmed reads (using the clipping information recorded within the SFF file) use this:

>>> from Bio import SeqIO

>>> SeqIO.convert("E3MFGYR02_random_10_reads.sff", "sff-trim", "trimmed.fasta", "fasta")

10

>>> SeqIO.convert("E3MFGYR02_random_10_reads.sff", "sff-trim", "trimmed.qual", "qual")

10

>>> SeqIO.convert("E3MFGYR02_random_10_reads.sff", "sff-trim", "trimmed.fastq", "fastq")

10

If you run Linux, you could ask Roche for a copy of their “off instrument” tools (often referred to as the
Newbler tools). This offers an alternative way to do SFF to FASTA or QUAL conversion at the command
line (but currently FASTQ output is not supported), e.g.

$ sffinfo -seq -notrim E3MFGYR02_random_10_reads.sff > reads.fasta

$ sffinfo -qual -notrim E3MFGYR02_random_10_reads.sff > reads.qual

$ sffinfo -seq -trim E3MFGYR02_random_10_reads.sff > trimmed.fasta

$ sffinfo -qual -trim E3MFGYR02_random_10_reads.sff > trimmed.qual

The way Biopython uses mixed case sequence strings to represent the trimming points deliberately mimics
what the Roche tools do.

For more information on the Biopython SFF support, consult the built in help:

>>> from Bio.SeqIO import SffIO

>>> help(SffIO)

...
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20.1.13 Identifying open reading frames

A very simplistic first step at identifying possible genes is to look for open reading frames (ORFs). By this
we mean look in all six frames for long regions without stop codons – an ORF is just a region of nucleotides
with no in frame stop codons.

Of course, to find a gene you would also need to worry about locating a start codon, possible promoters
– and in Eukaryotes there are introns to worry about too. However, this approach is still useful in viruses
and Prokaryotes.

To show how you might approach this with Biopython, we’ll need a sequence to search, and as an example
we’ll again use the bacterial plasmid – although this time we’ll start with a plain FASTA file with no pre-
marked genes: NC 005816.fna. This is a bacterial sequence, so we’ll want to use NCBI codon table 11 (see
Section 3.9 about translation).

>>> from Bio import SeqIO

>>> record = SeqIO.read("NC_005816.fna", "fasta")

>>> table = 11

>>> min_pro_len = 100

Here is a neat trick using the Seq object’s split method to get a list of all the possible ORF translations
in the six reading frames:

>>> for strand, nuc in [(+1, record.seq), (-1, record.seq.reverse_complement())]:

... for frame in range(3):

... length = 3 * ((len(record)-frame) // 3) #Multiple of three

... for pro in nuc[frame:frame+length].translate(table).split("*"):

... if len(pro) >= min_pro_len:

... print("%s...%s - length %i, strand %i, frame %i" \

... % (pro[:30], pro[-3:], len(pro), strand, frame))

GCLMKKSSIVATIITILSGSANAASSQLIP...YRF - length 315, strand 1, frame 0

KSGELRQTPPASSTLHLRLILQRSGVMMEL...NPE - length 285, strand 1, frame 1

GLNCSFFSICNWKFIDYINRLFQIIYLCKN...YYH - length 176, strand 1, frame 1

VKKILYIKALFLCTVIKLRRFIFSVNNMKF...DLP - length 165, strand 1, frame 1

NQIQGVICSPDSGEFMVTFETVMEIKILHK...GVA - length 355, strand 1, frame 2

RRKEHVSKKRRPQKRPRRRRFFHRLRPPDE...PTR - length 128, strand 1, frame 2

TGKQNSCQMSAIWQLRQNTATKTRQNRARI...AIK - length 100, strand 1, frame 2

QGSGYAFPHASILSGIAMSHFYFLVLHAVK...CSD - length 114, strand -1, frame 0

IYSTSEHTGEQVMRTLDEVIASRSPESQTR...FHV - length 111, strand -1, frame 0

WGKLQVIGLSMWMVLFSQRFDDWLNEQEDA...ESK - length 125, strand -1, frame 1

RGIFMSDTMVVNGSGGVPAFLFSGSTLSSY...LLK - length 361, strand -1, frame 1

WDVKTVTGVLHHPFHLTFSLCPEGATQSGR...VKR - length 111, strand -1, frame 1

LSHTVTDFTDQMAQVGLCQCVNVFLDEVTG...KAA - length 107, strand -1, frame 2

RALTGLSAPGIRSQTSCDRLRELRYVPVSL...PLQ - length 119, strand -1, frame 2

Note that here we are counting the frames from the 5’ end (start) of each strand. It is sometimes easier
to always count from the 5’ end (start) of the forward strand.

You could easily edit the above loop based code to build up a list of the candidate proteins, or convert
this to a list comprehension. Now, one thing this code doesn’t do is keep track of where the proteins are.

You could tackle this in several ways. For example, the following code tracks the locations in terms of
the protein counting, and converts back to the parent sequence by multiplying by three, then adjusting for
the frame and strand:

from Bio import SeqIO
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record = SeqIO.read("NC_005816.gb", "genbank")

table = 11

min_pro_len = 100

def find_orfs_with_trans(seq, trans_table, min_protein_length):

answer = []

seq_len = len(seq)

for strand, nuc in [(+1, seq), (-1, seq.reverse_complement())]:

for frame in range(3):

trans = str(nuc[frame:].translate(trans_table))

trans_len = len(trans)

aa_start = 0

aa_end = 0

while aa_start < trans_len:

aa_end = trans.find("*", aa_start)

if aa_end == -1:

aa_end = trans_len

if aa_end - aa_start >= min_protein_length:

if strand == 1:

start = frame + aa_start * 3

end = min(seq_len, frame + aa_end * 3 + 3)

else:

start = seq_len - frame - aa_end * 3 - 3

end = seq_len - frame - aa_start * 3

answer.append((start, end, strand, trans[aa_start:aa_end]))

aa_start = aa_end + 1

answer.sort()

return answer

orf_list = find_orfs_with_trans(record.seq, table, min_pro_len)

for start, end, strand, pro in orf_list:

print(

"%s...%s - length %i, strand %i, %i:%i"

% (pro[:30], pro[-3:], len(pro), strand, start, end)

)

And the output:

NQIQGVICSPDSGEFMVTFETVMEIKILHK...GVA - length 355, strand 1, 41:1109

WDVKTVTGVLHHPFHLTFSLCPEGATQSGR...VKR - length 111, strand -1, 491:827

KSGELRQTPPASSTLHLRLILQRSGVMMEL...NPE - length 285, strand 1, 1030:1888

RALTGLSAPGIRSQTSCDRLRELRYVPVSL...PLQ - length 119, strand -1, 2830:3190

RRKEHVSKKRRPQKRPRRRRFFHRLRPPDE...PTR - length 128, strand 1, 3470:3857

GLNCSFFSICNWKFIDYINRLFQIIYLCKN...YYH - length 176, strand 1, 4249:4780

RGIFMSDTMVVNGSGGVPAFLFSGSTLSSY...LLK - length 361, strand -1, 4814:5900

VKKILYIKALFLCTVIKLRRFIFSVNNMKF...DLP - length 165, strand 1, 5923:6421

LSHTVTDFTDQMAQVGLCQCVNVFLDEVTG...KAA - length 107, strand -1, 5974:6298

GCLMKKSSIVATIITILSGSANAASSQLIP...YRF - length 315, strand 1, 6654:7602

IYSTSEHTGEQVMRTLDEVIASRSPESQTR...FHV - length 111, strand -1, 7788:8124

WGKLQVIGLSMWMVLFSQRFDDWLNEQEDA...ESK - length 125, strand -1, 8087:8465
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TGKQNSCQMSAIWQLRQNTATKTRQNRARI...AIK - length 100, strand 1, 8741:9044

QGSGYAFPHASILSGIAMSHFYFLVLHAVK...CSD - length 114, strand -1, 9264:9609

If you comment out the sort statement, then the protein sequences will be shown in the same order as
before, so you can check this is doing the same thing. Here we have sorted them by location to make it easier
to compare to the actual annotation in the GenBank file (as visualised in Section 17.1.9).

If however all you want to find are the locations of the open reading frames, then it is a waste of time
to translate every possible codon, including doing the reverse complement to search the reverse strand too.
All you need to do is search for the possible stop codons (and their reverse complements). Using regular
expressions is an obvious approach here (see the Python module re). These are an extremely powerful (but
rather complex) way of describing search strings, which are supported in lots of programming languages and
also command line tools like grep as well). You can find whole books about this topic!

20.2 Sequence parsing plus simple plots

This section shows some more examples of sequence parsing, using the Bio.SeqIO module described in
Chapter 5, plus the Python library matplotlib’s pylab plotting interface (see the matplotlib website for a
tutorial). Note that to follow these examples you will need matplotlib installed - but without it you can still
try the data parsing bits.

20.2.1 Histogram of sequence lengths

There are lots of times when you might want to visualise the distribution of sequence lengths in a dataset –
for example the range of contig sizes in a genome assembly project. In this example we’ll reuse our orchid
FASTA file ls orchid.fasta which has only 94 sequences.

First of all, we will use Bio.SeqIO to parse the FASTA file and compile a list of all the sequence lengths.
You could do this with a for loop, but I find a list comprehension more pleasing:

>>> from Bio import SeqIO

>>> sizes = [len(rec) for rec in SeqIO.parse("ls_orchid.fasta", "fasta")]

>>> len(sizes), min(sizes), max(sizes)

(94, 572, 789)

>>> sizes

[740, 753, 748, 744, 733, 718, 730, 704, 740, 709, 700, 726, ..., 592]

Now that we have the lengths of all the genes (as a list of integers), we can use the matplotlib histogram
function to display it.

from Bio import SeqIO

sizes = [len(rec) for rec in SeqIO.parse("ls_orchid.fasta", "fasta")]

import pylab

pylab.hist(sizes, bins=20)

pylab.title(

"%i orchid sequences\nLengths %i to %i" % (len(sizes), min(sizes), max(sizes))

)

pylab.xlabel("Sequence length (bp)")

pylab.ylabel("Count")

pylab.show()
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Figure 20.1: Histogram of orchid sequence lengths.

That should pop up a new window containing the graph shown in Figure 20.1. Notice that most of these
orchid sequences are about 740 bp long, and there could be two distinct classes of sequence here with a
subset of shorter sequences.

Tip: Rather than using pylab.show() to show the plot in a window, you can also use pylab.savefig(...)
to save the figure to a file (e.g. as a PNG or PDF).

20.2.2 Plot of sequence GC%

Another easily calculated quantity of a nucleotide sequence is the GC%. You might want to look at the
GC% of all the genes in a bacterial genome for example, and investigate any outliers which could have been
recently acquired by horizontal gene transfer. Again, for this example we’ll reuse our orchid FASTA file
ls orchid.fasta.

First of all, we will use Bio.SeqIO to parse the FASTA file and compile a list of all the GC percentages.
Again, you could do this with a for loop, but I prefer this:

from Bio import SeqIO

from Bio.SeqUtils import GC

gc_values = sorted(GC(rec.seq) for rec in SeqIO.parse("ls_orchid.fasta", "fasta"))

Having read in each sequence and calculated the GC%, we then sorted them into ascending order. Now
we’ll take this list of floating point values and plot them with matplotlib:

import pylab
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pylab.plot(gc_values)

pylab.title(

"%i orchid sequences\nGC%% %0.1f to %0.1f"

% (len(gc_values), min(gc_values), max(gc_values))

)

pylab.xlabel("Genes")

pylab.ylabel("GC%")

pylab.show()

Figure 20.2: Histogram of orchid sequence lengths.

As in the previous example, that should pop up a new window with the graph shown in Figure 20.2. If you
tried this on the full set of genes from one organism, you’d probably get a much smoother plot than this.

20.2.3 Nucleotide dot plots

A dot plot is a way of visually comparing two nucleotide sequences for similarity to each other. A sliding
window is used to compare short sub-sequences to each other, often with a mis-match threshold. Here for
simplicity we’ll only look for perfect matches (shown in black in Figure 20.3).

To start off, we’ll need two sequences. For the sake of argument, we’ll just take the first two from our
orchid FASTA file ls orchid.fasta:

from Bio import SeqIO

with open("ls_orchid.fasta") as in_handle:

record_iterator = SeqIO.parse(in_handle, "fasta")
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Figure 20.3: Nucleotide dot plot of two orchid sequence lengths (using pylab’s imshow function).

rec_one = next(record_iterator)

rec_two = next(record_iterator)

We’re going to show two approaches. Firstly, a simple naive implementation which compares all the
window sized sub-sequences to each other to compiles a similarity matrix. You could construct a matrix or
array object, but here we just use a list of lists of booleans created with a nested list comprehension:

window = 7

seq_one = str(rec_one.seq).upper()

seq_two = str(rec_two.seq).upper()

data = [

[

(seq_one[i : i + window] != seq_two[j : j + window])

for j in range(len(seq_one) - window)

]

for i in range(len(seq_two) - window)

]

Note that we have not checked for reverse complement matches here. Now we’ll use the matplotlib’s
pylab.imshow() function to display this data, first requesting the gray color scheme so this is done in black
and white:

import pylab

pylab.gray()
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pylab.imshow(data)

pylab.xlabel("%s (length %i bp)" % (rec_one.id, len(rec_one)))

pylab.ylabel("%s (length %i bp)" % (rec_two.id, len(rec_two)))

pylab.title("Dot plot using window size %i\n(allowing no mis-matches)" % window)

pylab.show()

That should pop up a new window showing the graph in Figure 20.3. As you might have expected, these
two sequences are very similar with a partial line of window sized matches along the diagonal. There are no
off diagonal matches which would be indicative of inversions or other interesting events.

The above code works fine on small examples, but there are two problems applying this to larger sequences,
which we will address below. First off all, this brute force approach to the all against all comparisons is very
slow. Instead, we’ll compile dictionaries mapping the window sized sub-sequences to their locations, and
then take the set intersection to find those sub-sequences found in both sequences. This uses more memory,
but is much faster. Secondly, the pylab.imshow() function is limited in the size of matrix it can display.
As an alternative, we’ll use the pylab.scatter() function.

We start by creating dictionaries mapping the window-sized sub-sequences to locations:

window = 7

dict_one = {}

dict_two = {}

for (seq, section_dict) in [

(str(rec_one.seq).upper(), dict_one),

(str(rec_two.seq).upper(), dict_two),

]:

for i in range(len(seq) - window):

section = seq[i : i + window]

try:

section_dict[section].append(i)

except KeyError:

section_dict[section] = [i]

# Now find any sub-sequences found in both sequences

# (Python 2.3 would require slightly different code here)

matches = set(dict_one).intersection(dict_two)

print("%i unique matches" % len(matches))

In order to use the pylab.scatter() we need separate lists for the x and y co-ordinates:

# Create lists of x and y co-ordinates for scatter plot

x = []

y = []

for section in matches:

for i in dict_one[section]:

for j in dict_two[section]:

x.append(i)

y.append(j)

We are now ready to draw the revised dot plot as a scatter plot:

import pylab

pylab.cla() # clear any prior graph

pylab.gray()

pylab.scatter(x, y)

pylab.xlim(0, len(rec_one) - window)
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pylab.ylim(0, len(rec_two) - window)

pylab.xlabel("%s (length %i bp)" % (rec_one.id, len(rec_one)))

pylab.ylabel("%s (length %i bp)" % (rec_two.id, len(rec_two)))

pylab.title("Dot plot using window size %i\n(allowing no mis-matches)" % window)

pylab.show()

That should pop up a new window showing the graph in Figure 20.4. Personally I find this second plot

Figure 20.4: Nucleotide dot plot of two orchid sequence lengths (using pylab’s scatter function).

much easier to read! Again note that we have not checked for reverse complement matches here – you could
extend this example to do this, and perhaps plot the forward matches in one color and the reverse matches
in another.

20.2.4 Plotting the quality scores of sequencing read data

If you are working with second generation sequencing data, you may want to try plotting the quality data.
Here is an example using two FASTQ files containing paired end reads, SRR001666 1.fastq for the for-
ward reads, and SRR001666 2.fastq for the reverse reads. These were downloaded from the ENA se-
quence read archive FTP site (ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_1.
fastq.gz and ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_2.fastq.gz), and
are from E. coli – see https://www.ebi.ac.uk/ena/data/view/SRR001666 for details.

In the following code the pylab.subplot(...) function is used in order to show the forward and reverse
qualities on two subplots, side by side. There is also a little bit of code to only plot the first fifty reads.

import pylab

from Bio import SeqIO
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for subfigure in [1, 2]:

filename = "SRR001666_%i.fastq" % subfigure

pylab.subplot(1, 2, subfigure)

for i, record in enumerate(SeqIO.parse(filename, "fastq")):

if i >= 50:

break # trick!

pylab.plot(record.letter_annotations["phred_quality"])

pylab.ylim(0, 45)

pylab.ylabel("PHRED quality score")

pylab.xlabel("Position")

pylab.savefig("SRR001666.png")

print("Done")

You should note that we are using the Bio.SeqIO format name fastq here because the NCBI has saved
these reads using the standard Sanger FASTQ format with PHRED scores. However, as you might guess
from the read lengths, this data was from an Illumina Genome Analyzer and was probably originally in one
of the two Solexa/Illumina FASTQ variant file formats instead.

This example uses the pylab.savefig(...) function instead of pylab.show(...), but as mentioned
before both are useful. The result is shown in Figure 20.5.

Figure 20.5: Quality plot for some paired end reads.

20.3 Dealing with alignments

This section can been seen as a follow on to Chapter 6.
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20.3.1 Calculating summary information

Once you have an alignment, you are very likely going to want to find out information about it. Instead of
trying to have all of the functions that can generate information about an alignment in the alignment object
itself, we’ve tried to separate out the functionality into separate classes, which act on the alignment.

Getting ready to calculate summary information about an object is quick to do. Let’s say we’ve got
an alignment object called alignment, for example read in using Bio.AlignIO.read(...) as described in
Chapter 6. All we need to do to get an object that will calculate summary information is:

from Bio.Align import AlignInfo

summary_align = AlignInfo.SummaryInfo(alignment)

The summary_align object is very useful, and will do the following neat things for you:

1. Calculate a quick consensus sequence – see section 20.3.2

2. Get a position specific score matrix for the alignment – see section 20.3.3

3. Calculate the information content for the alignment – see section 20.3.4

4. Generate information on substitutions in the alignment – section 20.4 details using this to generate a
substitution matrix.

20.3.2 Calculating a quick consensus sequence

The SummaryInfo object, described in section 20.3.1, provides functionality to calculate a quick consensus of
an alignment. Assuming we’ve got a SummaryInfo object called summary_align we can calculate a consensus
by doing:

consensus = summary_align.dumb_consensus()

As the name suggests, this is a really simple consensus calculator, and will just add up all of the residues
at each point in the consensus, and if the most common value is higher than some threshold value will add
the common residue to the consensus. If it doesn’t reach the threshold, it adds an ambiguity character to
the consensus. The returned consensus object is Seq object whose alphabet is inferred from the alphabets
of the sequences making up the consensus. So doing a print consensus would give:

consensus Seq(’TATACATNAAAGNAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT

...’, IUPACAmbiguousDNA())

You can adjust how dumb_consensus works by passing optional parameters:

the threshold This is the threshold specifying how common a particular residue has to be at a position
before it is added. The default is 0.7 (meaning 70%).

the ambiguous character This is the ambiguity character to use. The default is ’N’.

the consensus alphabet This is the alphabet to use for the consensus sequence. If an alphabet is not
specified than we will try to guess the alphabet based on the alphabets of the sequences in the alignment.
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20.3.3 Position Specific Score Matrices

Position specific score matrices (PSSMs) summarize the alignment information in a different way than a
consensus, and may be useful for different tasks. Basically, a PSSM is a count matrix. For each column in
the alignment, the number of each alphabet letters is counted and totaled. The totals are displayed relative
to some representative sequence along the left axis. This sequence may be the consesus sequence, but can
also be any sequence in the alignment. For instance for the alignment,

GTATC

AT--C

CTGTC

the PSSM is:

G A T C

G 1 1 0 1

T 0 0 3 0

A 1 1 0 0

T 0 0 2 0

C 0 0 0 3

Let’s assume we’ve got an alignment object called c_align. To get a PSSM with the consensus sequence
along the side we first get a summary object and calculate the consensus sequence:

summary_align = AlignInfo.SummaryInfo(c_align)

consensus = summary_align.dumb_consensus()

Now, we want to make the PSSM, but ignore any N ambiguity residues when calculating this:

my_pssm = summary_align.pos_specific_score_matrix(consensus, chars_to_ignore=["N"])

Two notes should be made about this:

1. To maintain strictness with the alphabets, you can only include characters along the top of the PSSM
that are in the alphabet of the alignment object. Gaps are not included along the top axis of the
PSSM.

2. The sequence passed to be displayed along the left side of the axis does not need to be the consensus.
For instance, if you wanted to display the second sequence in the alignment along this axis, you would
need to do:

second_seq = alignment.get_seq_by_num(1)

my_pssm = summary_align.pos_specific_score_matrix(second_seq, chars_to_ignore=["N"])

The command above returns a PSSM object. To print out the PSSM as shown above, we simply need to
do a print(my_pssm), which gives:

A C G T

T 0.0 0.0 0.0 7.0

A 7.0 0.0 0.0 0.0

T 0.0 0.0 0.0 7.0

A 7.0 0.0 0.0 0.0

C 0.0 7.0 0.0 0.0

A 7.0 0.0 0.0 0.0

T 0.0 0.0 0.0 7.0

T 1.0 0.0 0.0 6.0

...
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You can access any element of the PSSM by subscripting like your_pssm[sequence_number][residue_count_name].
For instance, to get the counts for the ’A’ residue in the second element of the above PSSM you would do:

>>> print(my_pssm[1]["A"])

7.0

The structure of the PSSM class hopefully makes it easy both to access elements and to pretty print the
matrix.

20.3.4 Information Content

A potentially useful measure of evolutionary conservation is the information content of a sequence.
A useful introduction to information theory targeted towards molecular biologists can be found at http:

//www.lecb.ncifcrf.gov/~toms/paper/primer/. For our purposes, we will be looking at the information
content of a consesus sequence, or a portion of a consensus sequence. We calculate information content at a
particular column in a multiple sequence alignment using the following formula:

ICj =

Na∑
i=1

Pij log

(
Pij
Qi

)
where:

• ICj – The information content for the j-th column in an alignment.

• Na – The number of letters in the alphabet.

• Pij – The frequency of a particular letter i in the j-th column (i. e. if G occurred 3 out of 6 times in
an aligment column, this would be 0.5)

• Qi – The expected frequency of a letter i. This is an optional argument, usage of which is left at
the user’s discretion. By default, it is automatically assigned to 0.05 = 1/20 for a protein alphabet,
and 0.25 = 1/4 for a nucleic acid alphabet. This is for geting the information content without any
assumption of prior distributions. When assuming priors, or when using a non-standard alphabet, you
should supply the values for Qi.

Well, now that we have an idea what information content is being calculated in Biopython, let’s look at
how to get it for a particular region of the alignment.

First, we need to use our alignment to get an alignment summary object, which we’ll assume is called
summary_align (see section 20.3.1) for instructions on how to get this. Once we’ve got this object, calculating
the information content for a region is as easy as:

info_content = summary_align.information_content(5, 30, chars_to_ignore=["N"])

Wow, that was much easier then the formula above made it look! The variable info_content now
contains a float value specifying the information content over the specified region (from 5 to 30 of the
alignment). We specifically ignore the ambiguity residue ’N’ when calculating the information content, since
this value is not included in our alphabet (so we shouldn’t be interested in looking at it!).

As mentioned above, we can also calculate relative information content by supplying the expected fre-
quencies:

expect_freq = {"A": 0.3, "G": 0.2, "T": 0.3, "C": 0.2}

The expected should not be passed as a raw dictionary, but instead by passed as a SubsMat.FreqTable

object (see section 22.2.2 for more information about FreqTables). The FreqTable object provides a standard
for associating the dictionary with an Alphabet, similar to how the Biopython Seq class works.

To create a FreqTable object, from the frequency dictionary you just need to do:
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from Bio.Alphabet import IUPAC

from Bio.SubsMat import FreqTable

e_freq_table = FreqTable.FreqTable(expect_freq, FreqTable.FREQ, IUPAC.unambiguous_dna)

Now that we’ve got that, calculating the relative information content for our region of the alignment is
as simple as:

info_content = summary_align.information_content(

5, 30, e_freq_table=e_freq_table, chars_to_ignore=["N"]

)

Now, info_content will contain the relative information content over the region in relation to the
expected frequencies.

The value return is calculated using base 2 as the logarithm base in the formula above. You can modify
this by passing the parameter log_base as the base you want:

info_content = summary_align.information_content(

5, 30, log_base=10, chars_to_ignore=["N"]

)

By default nucleotide or amino acid residues with a frequency of 0 in a column are not take into account
when the relative information column for that column is computed. If this is not the desired result, you can
use pseudo_count instead.

info_content = summary_align.information_content(

5, 30, chars_to_ignore=["N"], pseudo_count=1

)

In this case, the observed frequency Pij of a particular letter i in the j-th column is computed as follow :

Pij =
nij + k ×Qi
Nj + k

where:

• k – the pseudo count you pass as argument.

• k – the pseudo count you pass as argument.

• Qi – The expected frequency of the letter i as described above.

Well, now you are ready to calculate information content. If you want to try applying this to some real
life problems, it would probably be best to dig into the literature on information content to get an idea of
how it is used. Hopefully your digging won’t reveal any mistakes made in coding this function!

20.4 Substitution Matrices

Substitution matrices are an extremely important part of everyday bioinformatics work. They provide the
scoring terms for classifying how likely two different residues are to substitute for each other. This is essential
in doing sequence comparisons. The book “Biological Sequence Analysis” by Durbin et al. provides a really
nice introduction to Substitution Matrices and their uses. Some famous substitution matrices are the PAM
and BLOSUM series of matrices.

Biopython provides a ton of common substitution matrices, and also provides functionality for creating
your own substitution matrices.
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20.4.1 Using common substitution matrices

20.4.2 Creating your own substitution matrix from an alignment

A very cool thing that you can do easily with the substitution matrix classes is to create your own substitution
matrix from an alignment. In practice, this is normally done with protein alignments. In this example, we’ll
first get a Biopython alignment object and then get a summary object to calculate info about the alignment.
The file containing protein.aln (also available online here) contains the Clustalw alignment output.

>>> from Bio import AlignIO

>>> from Bio import Alphabet

>>> from Bio.Alphabet import IUPAC

>>> from Bio.Align import AlignInfo

>>> filename = "protein.aln"

>>> alpha = Alphabet.Gapped(IUPAC.protein)

>>> c_align = AlignIO.read(filename, "clustal", alphabet=alpha)

>>> summary_align = AlignInfo.SummaryInfo(c_align)

Sections 6.4.1 and 20.3.1 contain more information on doing this.
Now that we’ve got our summary_align object, we want to use it to find out the number of times different

residues substitute for each other. To make the example more readable, we’ll focus on only amino acids with
polar charged side chains. Luckily, this can be done easily when generating a replacement dictionary, by
passing in all of the characters that should be ignored. Thus we’ll create a dictionary of replacements for
only charged polar amino acids using:

>>> replace_info = summary_align.replacement_dictionary(["G", "A", "V", "L", "I",

... "M", "P", "F", "W", "S",

... "T", "N", "Q", "Y", "C"])

This information about amino acid replacements is represented as a python dictionary which will look
something like (the order can vary):

{

("R", "R"): 2079.0,

("R", "H"): 17.0,

("R", "K"): 103.0,

("R", "E"): 2.0,

("R", "D"): 2.0,

("H", "R"): 0,

("D", "H"): 15.0,

("K", "K"): 3218.0,

("K", "H"): 24.0,

("H", "K"): 8.0,

("E", "H"): 15.0,

("H", "H"): 1235.0,

("H", "E"): 18.0,

("H", "D"): 0,

("K", "D"): 0,

("K", "E"): 9.0,

("D", "R"): 48.0,

("E", "R"): 2.0,

("D", "K"): 1.0,

("E", "K"): 45.0,
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("K", "R"): 130.0,

("E", "D"): 241.0,

("E", "E"): 3305.0,

("D", "E"): 270.0,

("D", "D"): 2360.0,

}

This information gives us our accepted number of replacements, or how often we expect different things
to substitute for each other. It turns out, amazingly enough, that this is all of the information we need to
go ahead and create a substitution matrix. First, we use the replacement dictionary information to create
an Accepted Replacement Matrix (ARM):

>>> from Bio import SubsMat

>>> my_arm = SubsMat.SeqMat(replace_info)

With this accepted replacement matrix, we can go right ahead and create our log odds matrix (i. e. a
standard type Substitution Matrix):

>>> my_lom = SubsMat.make_log_odds_matrix(my_arm)

The log odds matrix you create is customizable with the following optional arguments:

• exp_freq_table – You can pass a table of expected frequencies for each alphabet. If supplied, this
will be used instead of the passed accepted replacement matrix when calculate expected replacments.

• logbase - The base of the logarithm taken to create the log odd matrix. Defaults to base 10.

• factor - The factor to multiply each matrix entry by. This defaults to 10, which normally makes the
matrix numbers easy to work with.

• round_digit - The digit to round to in the matrix. This defaults to 0 (i. e. no digits).

Once you’ve got your log odds matrix, you can display it prettily using the function format. Doing this
on our created matrix gives:

>>> print(my_lom.format())

D 2

E -1 1

H -5 -4 3

K -10 -5 -4 1

R -4 -8 -4 -2 2

D E H K R

Very nice. Now we’ve got our very own substitution matrix to play with!

20.5 BioSQL – storing sequences in a relational database

BioSQL is a joint effort between the OBF projects (BioPerl, BioJava etc) to support a shared database
schema for storing sequence data. In theory, you could load a GenBank file into the database with BioPerl,
then using Biopython extract this from the database as a record object with features - and get more or less
the same thing as if you had loaded the GenBank file directly as a SeqRecord using Bio.SeqIO (Chapter 5).

Biopython’s BioSQL module is currently documented at http://biopython.org/wiki/BioSQL which is
part of our wiki pages.
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Chapter 21

The Biopython testing framework

Biopython has a regression testing framework (the file run_tests.py) based on unittest, the standard
unit testing framework for Python. Providing comprehensive tests for modules is one of the most important
aspects of making sure that the Biopython code is as bug-free as possible before going out. It also tends to be
one of the most undervalued aspects of contributing. This chapter is designed to make running the Biopython
tests and writing good test code as easy as possible. Ideally, every module that goes into Biopython should
have a test (and should also have documentation!). All our developers, and anyone installing Biopython
from source, are strongly encouraged to run the unit tests.

21.1 Running the tests

When you download the Biopython source code, or check it out from our source code repository, you should
find a subdirectory call Tests. This contains the key script run_tests.py, lots of individual scripts named
test_XXX.py, and lots of other subdirectories which contain input files for the test suite.

As part of building and installing Biopython you will typically run the full test suite at the command
line from the Biopython source top level directory using the following:

$ python setup.py test

This is actually equivalent to going to the Tests subdirectory and running:

$ python run_tests.py

You’ll often want to run just some of the tests, and this is done like this:

$ python run_tests.py test_SeqIO.py test_AlignIO.py

When giving the list of tests, the .py extension is optional, so you can also just type:

$ python run_tests.py test_SeqIO test_AlignIO

To run the docstring tests (see section 21.3), you can use

$ python run_tests.py doctest

You can also skip any tests which have been setup with an explicit online component by adding --offline,
e.g.

$ python run_tests.py --offline
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By default, run_tests.py runs all tests, including the docstring tests.
If an individual test is failing, you can also try running it directly, which may give you more information.
Tests based on Python’s standard unittest framework will import unittest and then define unittest.TestCase

classes, each with one or more sub-tests as methods starting with test_ which check some specific aspect of
the code.

21.1.1 Running the tests using Tox

Like most Python projects, you can also use Tox to run the tests on multiple Python versions, provided they
are already installed in your system.

We do not provide the configuration tox.ini file in our code base because of difficulties pinning down
user-specific settings (e.g. executable names of the Python versions). You may also only be interested in
testing Biopython only against a subset of the Python versions that we support.

If you are interested in using Tox, you could start with the example tox.ini shown below:

[tox]

envlist = py27,pypy,py36,py37

[testenv]

changedir = Tests

commands = {envpython} run_tests.py --offline

deps =

numpy

reportlab

Using the template above, executing tox will test your Biopython code against Python 2.7, PyPy, Python
3.6 and Python3.7. It assumes that those Pythons’ executables are named accordingly: “python2.7“ for
Python 2.7, and so on.

21.2 Writing tests

Let’s say you want to write some tests for a module called Biospam. This can be a module you wrote, or
an existing module that doesn’t have any tests yet. In the examples below, we assume that Biospam is a
module that does simple math.

Each Biopython test consists of a script containing the test itself, and optionally a directory with input
files used by the test:

1. test_Biospam.py – The actual test code for your module.

2. Biospam [optional]– A directory where any necessary input files will be located. If you have any output
files that should be manually reviewed, output them here (but this is discouraged) to prevent clogging
up the main Tests directory. In general, use a temporary file/folder.

Any script with a test_ prefix in the Tests directory will be found and run by run_tests.py. Below,
we show an example test script test_Biospam.py. If you put this script in the Biopython Tests directory,
then run_tests.py will find it and execute the tests contained in it:

$ python run_tests.py

test_Ace ... ok

test_AlignIO ... ok

test_BioSQL ... ok

test_BioSQL_SeqIO ... ok
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test_Biospam ... ok

test_CAPS ... ok

test_Clustalw ... ok

...

----------------------------------------------------------------------

Ran 107 tests in 86.127 seconds

21.2.1 Writing a test using unittest

The unittest-framework has been included with Python since version 2.1, and is documented in the Python
Library Reference (which I know you are keeping under your pillow, as recommended). There is also online
documentaion for unittest. If you are familiar with the unittest system (or something similar like the nose
test framework), you shouldn’t have any trouble. You may find looking at the existing examples within
Biopython helpful too.

Here’s a minimal unittest-style test script for Biospam, which you can copy and paste to get started:

import unittest

from Bio import Biospam

class BiospamTestAddition(unittest.TestCase):

def test_addition1(self):

result = Biospam.addition(2, 3)

self.assertEqual(result, 5)

def test_addition2(self):

result = Biospam.addition(9, -1)

self.assertEqual(result, 8)

class BiospamTestDivision(unittest.TestCase):

def test_division1(self):

result = Biospam.division(3.0, 2.0)

self.assertAlmostEqual(result, 1.5)

def test_division2(self):

result = Biospam.division(10.0, -2.0)

self.assertAlmostEqual(result, -5.0)

if __name__ == "__main__":

runner = unittest.TextTestRunner(verbosity=2)

unittest.main(testRunner=runner)

In the division tests, we use assertAlmostEqual instead of assertEqual to avoid tests failing due to
roundoff errors; see the unittest chapter in the Python documentation for details and for other functionality
available in unittest (online reference).

These are the key points of unittest-based tests:

• Test cases are stored in classes that derive from unittest.TestCase and cover one basic aspect of
your code
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• You can use methods setUp and tearDown for any repeated code which should be run before and after
each test method. For example, the setUp method might be used to create an instance of the object
you are testing, or open a file handle. The tearDown should do any “tidying up”, for example closing
the file handle.

• The tests are prefixed with test_ and each test should cover one specific part of what you are trying
to test. You can have as many tests as you want in a class.

• At the end of the test script, you can use

if __name__ == "__main__":

runner = unittest.TextTestRunner(verbosity=2)

unittest.main(testRunner=runner)

to execute the tests when the script is run by itself (rather than imported from run_tests.py). If you
run this script, then you’ll see something like the following:

$ python test_BiospamMyModule.py

test_addition1 (__main__.TestAddition) ... ok

test_addition2 (__main__.TestAddition) ... ok

test_division1 (__main__.TestDivision) ... ok

test_division2 (__main__.TestDivision) ... ok

----------------------------------------------------------------------

Ran 4 tests in 0.059s

OK

• To indicate more clearly what each test is doing, you can add docstrings to each test. These are shown
when running the tests, which can be useful information if a test is failing.

import unittest

from Bio import Biospam

class BiospamTestAddition(unittest.TestCase):

def test_addition1(self):

"""An addition test"""

result = Biospam.addition(2, 3)

self.assertEqual(result, 5)

def test_addition2(self):

"""A second addition test"""

result = Biospam.addition(9, -1)

self.assertEqual(result, 8)

class BiospamTestDivision(unittest.TestCase):

def test_division1(self):

"""Now let’s check division"""

result = Biospam.division(3.0, 2.0)

self.assertAlmostEqual(result, 1.5)

def test_division2(self):
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"""A second division test"""

result = Biospam.division(10.0, -2.0)

self.assertAlmostEqual(result, -5.0)

if __name__ == "__main__":

runner = unittest.TextTestRunner(verbosity=2)

unittest.main(testRunner=runner)

Running the script will now show you:

$ python test_BiospamMyModule.py

An addition test ... ok

A second addition test ... ok

Now let’s check division ... ok

A second division test ... ok

----------------------------------------------------------------------

Ran 4 tests in 0.001s

OK

If your module contains docstring tests (see section 21.3), you may want to include those in the tests to
be run. You can do so as follows by modifying the code under if __name__ == "__main__": to look like
this:

if __name__ == "__main__":

unittest_suite = unittest.TestLoader().loadTestsFromName("test_Biospam")

doctest_suite = doctest.DocTestSuite(Biospam)

suite = unittest.TestSuite((unittest_suite, doctest_suite))

runner = unittest.TextTestRunner(sys.stdout, verbosity=2)

runner.run(suite)

This is only relevant if you want to run the docstring tests when you execute python test_Biospam.py

if it has some complex run-time dependency checking.
In general instead include the docstring tests by adding them to the run_tests.py as explained below.

21.3 Writing doctests

Python modules, classes and functions support built in documentation using docstrings. The doctest frame-
work (included with Python) allows the developer to embed working examples in the docstrings, and have
these examples automatically tested.

Currently only part of Biopython includes doctests. The run_tests.py script takes care of running the
doctests. For this purpose, at the top of the run_tests.py script is a manually compiled list of modules to
skip, important where optional external dependencies which may not be installed (e.g. the Reportlab and
NumPy libraries). So, if you’ve added some doctests to the docstrings in a Biopython module, in order to
have them excluded in the Biopython test suite, you must update run_tests.py to include your module.
Currently, the relevant part of run_tests.py looks as follows:

# Following modules have historic failures. If you fix one of these

# please remove here!

EXCLUDE_DOCTEST_MODULES = [
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"Bio.PDB",

"Bio.PDB.AbstractPropertyMap",

"Bio.Phylo.Applications._Fasttree",

"Bio.Phylo._io",

"Bio.Phylo.TreeConstruction",

"Bio.Phylo._utils",

]

# Exclude modules with online activity

# They are not excluded by default, use --offline to exclude them

ONLINE_DOCTEST_MODULES = [

"Bio.Entrez",

"Bio.ExPASy",

"Bio.TogoWS",

]

# Silently ignore any doctests for modules requiring numpy!

if numpy is None:

EXCLUDE_DOCTEST_MODULES.extend(

[

"Bio.Affy.CelFile",

"Bio.Cluster",

# ...

]

)

Note that we regard doctests primarily as documentation, so you should stick to typical usage. Generally
complicated examples dealing with error conditions and the like would be best left to a dedicated unit test.

Note that if you want to write doctests involving file parsing, defining the file location complicates matters.
Ideally use relative paths assuming the code will be run from the Tests directory, see the Bio.SeqIO doctests
for an example of this.

To run the docstring tests only, use

$ python run_tests.py doctest

Note that the doctest system is fragile and care is needed to ensure your output will match on all the
different versions of Python that Biopython supports (e.g. differences in floating point numbers).

21.4 Writing doctests in the Tutorial

This Tutorial you are reading has a lot of code snippets, which are often formatted like a doctest. We have
our own system in file test_Tutorial.py to allow tagging code snippets in the Tutorial source to be run as
Python doctests. This works by adding special %doctest comment lines before each Python block, e.g.

%doctest

\begin{minted}{pycon}

>>> from Bio.Alphabet import generic_dna

>>> from Bio.Seq import Seq

>>> len("ACGT")

4

\end{minted}
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Often code examples are not self-contained, but continue from the previous Python block. Here we use the
magic comment %cont-doctest as shown here:

%cont-doctest

\begin{minted}{pycon}

>>> Seq("ACGT") == Seq("ACGT", generic_dna)

True

\end{minted}

The special %doctest comment line can take a working directory (relative to the Doc/ folder) to use
if you have any example data files, e.g. %doctest examples will use the Doc/examples folder, while
%doctest ../Tests/GenBank will use the Tests/GenBank folder.

After the directory argument, you can specify any Python dependencies which must be present in order
to run the test by adding lib:XXX to indicate import XXX must work, e.g. %doctest examples lib:numpy

You can run the Tutorial doctests via:

$ python test_Tutorial.py

or:

$ python run_tests.py test_Tutorial.py

344



Chapter 22

Advanced

22.1 Parser Design

Many of the older Biopython parsers were built around an event-oriented design that includes Scanner and
Consumer objects.

Scanners take input from a data source and analyze it line by line, sending off an event whenever it
recognizes some information in the data. For example, if the data includes information about an organism
name, the scanner may generate an organism_name event whenever it encounters a line containing the name.

Consumers are objects that receive the events generated by Scanners. Following the previous example,
the consumer receives the organism_name event, and the processes it in whatever manner necessary in the
current application.

This is a very flexible framework, which is advantageous if you want to be able to parse a file format
into more than one representation. For example, the Bio.GenBank module uses this to construct either
SeqRecord objects or file-format-specific record objects.

More recently, many of the parsers added for Bio.SeqIO and Bio.AlignIO take a much simpler ap-
proach, but only generate a single object representation (SeqRecord and MultipleSeqAlignment objects
respectively). In some cases the Bio.SeqIO parsers actually wrap another Biopython parser - for exam-
ple, the Bio.SwissProt parser produces SwissProt format specific record objects, which get converted into
SeqRecord objects.

22.2 Substitution Matrices

22.2.1 SubsMat

This module provides a class and a few routines for generating substitution matrices, similar to BLOSUM or
PAM matrices, but based on user-provided data. Additionally, you may select a matrix from MatrixInfo.py,
a collection of established substitution matrices.

The SeqMat class derives from a dictionary. The dictionary is of the form {(i1,j1):n1, (i1,j2):n2,...,(ik,jk):nk}

where i, j are alphabet letters, and n is a value.

1. Attributes

(a) self.alphabet: a class as defined in Bio.Alphabet

(b) self.ab_list: a list of the alphabet’s letters, sorted. Needed mainly for internal purposes

2. Methods

(a) __init__(self, data=None, alphabet=None, mat_name="", build_later=0)

345



i. data: can be either a dictionary, or another SeqMat instance.

ii. alphabet: a Bio.Alphabet instance. If not provided, construct an alphabet from data.

iii. mat_name: matrix name, such as ”BLOSUM62” or ”PAM250”

iv. build_later: default false. If true, user may supply only alphabet and empty dictionary, if
intending to build the matrix later. this skips the sanity check of alphabet size vs. matrix
size.

(b) entropy(self, obs_freq_mat)

i. obs_freq_mat: an observed frequency matrix. Returns the matrix’s entropy, based on the
frequency in obs_freq_mat. The matrix instance should be LO or SUBS.

(c) sum(self)

Calculates the sum of values for each letter in the matrix’s alphabet, and returns it as a dictionary
of the form {i1: s1, i2: s2,...,in:sn}, where:

• i: an alphabet letter;

• s: sum of all values in a half-matrix for that letter;

• n: number of letters in alphabet.

(d) format(self, fmt="%4d", topfmt="%4s", alphabet=None, full=False)

Creates a string representation of the matrix. fmt is the format field for the matrix values;
letterfmt is the format field for the bottom row (in case of a half matrix) or the top row (in case
of a full matrix), containing matrix letters. Example output for a 3-letter alphabet matrix:

A 23

B 12 34

C 7 22 27

A B C

The alphabet optional argument is a string of all characters in the alphabet. If supplied, the
order of letters along the axes is taken from the string, rather than by alphabetical order.

3. Usage

The following section is laid out in the order by which most people wish to generate a log-odds matrix.
Of course, interim matrices can be generated and investigated. Most people just want a log-odds
matrix, that’s all.

(a) Generating an Accepted Replacement Matrix

Initially, you should generate an accepted replacement matrix (ARM) from your data. The values
in ARM are the counted number of replacements according to your data. The data could be a
set of pairs or multiple alignments. So for instance if Alanine was replaced by Cysteine 10 times,
and Cysteine by Alanine 12 times, the corresponding ARM entries would be:

(’A’,’C’): 10, (’C’,’A’): 12

as order doesn’t matter, user can already provide only one entry:

(’A’,’C’): 22

A SeqMat instance may be initialized with either a full (first method of counting: 10, 12) or half
(the latter method, 22) matrices. A full protein alphabet matrix would be of the size 20x20 =
400. A half matrix of that alphabet would be 20x20/2 + 20/2 = 210. That is because same-letter
entries don’t change. (The matrix diagonal). Given an alphabet size of N:

i. Full matrix size: N*N

ii. Half matrix size: N(N+1)/2
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The SeqMat constructor automatically generates a half-matrix, if a full matrix is passed. If a half
matrix is passed, letters in the key should be provided in alphabetical order: (’A’,’C’) and not
(’C’,A’).

At this point, if all you wish to do is generate a log-odds matrix, please go to the section titled
Example of Use. The following text describes the nitty-gritty of internal functions, to be used by
people who wish to investigate their nucleotide/amino-acid frequency data more thoroughly.

(b) Generating the observed frequency matrix (OFM)

Use:

OFM = SubsMat._build_obs_freq_mat(ARM)

The OFM is generated from the ARM, only instead of replacement counts, it contains replacement
frequencies.

(c) Generating an expected frequency matrix (EFM)

Use:

EFM = SubsMat._build_exp_freq_mat(OFM, exp_freq_table)

i. exp_freq_table: should be a FreqTable instance. See section 22.2.2 for detailed information
on FreqTable. Briefly, the expected frequency table has the frequencies of appearance for
each member of the alphabet. It is implemented as a dictionary with the alphabet letters as
keys, and each letter’s frequency as a value. Values sum to 1.

The expected frequency table can (and generally should) be generated from the observed frequency
matrix. So in most cases you will generate exp_freq_table using:

>>> exp_freq_table = SubsMat._exp_freq_table_from_obs_freq(OFM)

>>> EFM = SubsMat._build_exp_freq_mat(OFM, exp_freq_table)

But you can supply your own exp_freq_table, if you wish

(d) Generating a substitution frequency matrix (SFM)

Use:

SFM = SubsMat._build_subs_mat(OFM, EFM)

Accepts an OFM, EFM. Provides the division product of the corresponding values.

(e) Generating a log-odds matrix (LOM)

Use:

LOM = SubsMat._build_log_odds_mat(SFM, logbase=10, factor=10.0, round_digit=1)

i. Accepts an SFM.

ii. logbase: base of the logarithm used to generate the log-odds values.

iii. factor: factor used to multiply the log-odds values. Each entry is generated by log(LOM[key])*factor
And rounded to the round_digit place after the decimal point, if required.

4. Example of use

As most people would want to generate a log-odds matrix, with minimum hassle, SubsMat provides
one function which does it all:

make_log_odds_matrix(

acc_rep_mat, exp_freq_table=None, logbase=10, factor=10.0, round_digit=0

)

(a) acc_rep_mat: user provided accepted replacements matrix

(b) exp_freq_table: expected frequencies table. Used if provided, if not, generated from the
acc_rep_mat.

(c) logbase: base of logarithm for the log-odds matrix. Default base 10.

(d) round_digit: number after decimal digit to which result should be rounded. Default zero.
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22.2.2 FreqTable

FreqTable.FreqTable(UserDict.UserDict)

1. Attributes:

(a) alphabet: A Bio.Alphabet instance.

(b) data: frequency dictionary

(c) count: count dictionary (in case counts are provided).

2. Functions:

(a) read_count(f): read a count file from stream f. Then convert to frequencies.

(b) read_freq(f): read a frequency data file from stream f. Of course, we then don’t have the counts,
but it is usually the letter frequencies which are interesting.

3. Example of use: The expected count of the residues in the database is sitting in a file, whitespace
delimited, in the following format (example given for a 3-letter alphabet):

A 35

B 65

C 100

And will be read using the FreqTable.read_count(file_handle) function.

An equivalent frequency file:

A 0.175

B 0.325

C 0.5

Conversely, the residue frequencies or counts can be passed as a dictionary. Example of a count
dictionary (3-letter alphabet):

{"A": 35, "B": 65, "C": 100}

Which means that an expected data count would give a 0.5 frequency for ’C’, a 0.325 probability of
’B’ and a 0.175 probability of ’A’ out of 200 total, sum of A, B and C)

A frequency dictionary for the same data would be:

{"A": 0.175, "B": 0.325, "C": 0.5}

Summing up to 1.

When passing a dictionary as an argument, you should indicate whether it is a count or a frequency
dictionary. Therefore the FreqTable class constructor requires two arguments: the dictionary itself,
and FreqTable.COUNT or FreqTable.FREQ indicating counts or frequencies, respectively.

Read expected counts. readCount will already generate the frequencies Any one of the following may
be done to geerate the frequency table (ftab):

>>> from SubsMat import *

>>> ftab = FreqTable.FreqTable(my_frequency_dictionary, FreqTable.FREQ)

>>> ftab = FreqTable.FreqTable(my_count_dictionary, FreqTable.COUNT)

>>> ftab = FreqTable.read_count(open("myCountFile"))

>>> ftab = FreqTable.read_frequency(open("myFrequencyFile"))
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Chapter 23

Where to go from here – contributing
to Biopython

23.1 Bug Reports + Feature Requests

Getting feedback on the Biopython modules is very important to us. Open-source projects like this benefit
greatly from feedback, bug-reports (and patches!) from a wide variety of contributors.

The main forums for discussing feature requests and potential bugs are the Biopython mailing list and
issues or pull requests on GitHub.

Additionally, if you think you’ve found a new bug, you can submit it to our issue tracker at https://

github.com/biopython/biopython/issues (this replaced the older Open Bioinformatics Foundation hosted
RedMine tracker). This way, it won’t get buried in anyone’s Inbox and forgotten about.

23.2 Mailing lists and helping newcomers

We encourage all our uses to sign up to the main Biopython mailing list. Once you’ve got the hang of an area
of Biopython, we’d encourage you to help answer questions from beginners. After all, you were a beginner
once.

23.3 Contributing Documentation

We’re happy to take feedback or contributions - either via a bug-report or on the Mailing List. While
reading this tutorial, perhaps you noticed some topics you were interested in which were missing, or not
clearly explained. There is also Biopython’s built in documentation (the docstrings, these are also online),
where again, you may be able to help fill in any blanks.

23.4 Contributing cookbook examples

As explained in Chapter 20, Biopython now has a wiki collection of user contributed “cookbook” examples,
http://biopython.org/wiki/Category:Cookbook – maybe you can add to this?

23.5 Maintaining a distribution for a platform

We currently provide source code archives (suitable for any OS, if you have the right build tools installed),
and Windows Installers which are just click and run. This covers all the major operating systems.
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Most major Linux distributions have volunteers who take these source code releases, and compile them
into packages for Linux users to easily install (taking care of dependencies etc). This is really great and we
are of course very grateful. If you would like to contribute to this work, please find out more about how
your Linux distribution handles this.

Below are some tips for certain platforms to maybe get people started with helping out:

Windows – Windows products typically have a nice graphical installer that installs all of the essential
components in the right place. We use Distutils to create a installer of this type fairly easily.

You must first make sure you have a C compiler on your Windows computer, and that you can compile
and install things (this is the hard bit - see the Biopython installation instructions for info on how to
do this).

Once you are setup with a C compiler, making the installer just requires doing:

$ python setup.py bdist_wininst

Now you’ve got a Windows installer. Congrats! At the moment we have no trouble shipping installers
built on 32 bit windows. If anyone would like to look into supporting 64 bit Windows that would be
great.

RPMs – RPMs are pretty popular package systems on some Linux platforms. There is lots of documentation
on RPMs available at http://www.rpm.org to help you get started with them. To create an RPM
for your platform is really easy. You just need to be able to build the package from source (having a
C compiler that works is thus essential) – see the Biopython installation instructions for more info on
this.

To make the RPM, you just need to do:

$ python setup.py bdist_rpm

This will create an RPM for your specific platform and a source RPM in the directory dist. This
RPM should be good and ready to go, so this is all you need to do! Nice and easy.

Macintosh – Since Apple moved to Mac OS X, things have become much easier on the Mac. We generally
treat it as just another Unix variant, and installing Biopython from source is just as easy as on Linux.
The easiest way to get all the GCC compilers etc installed is to install Apple’s X-Code. We might be
able to provide click and run installers for Mac OS X, but to date there hasn’t been any demand.

Once you’ve got a package, please test it on your system to make sure it installs everything in a good
way and seems to work properly. Once you feel good about it, make a pull request on GitHub and write to
our Biopython mailing list. You’ve done it. Thanks!

23.6 Contributing Unit Tests

Even if you don’t have any new functionality to add to Biopython, but you want to write some code, please
consider extending our unit test coverage. We’ve devoted all of Chapter 21 to this topic.

23.7 Contributing Code

There are no barriers to joining Biopython code development other than an interest in creating biology-
related code in Python. The best place to express an interest is on the Biopython mailing lists – just let us
know you are interested in coding and what kind of stuff you want to work on. Normally, we try to have
some discussion on modules before coding them, since that helps generate good ideas – then just feel free to
jump right in and start coding!
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The main Biopython release tries to be fairly uniform and interworkable, to make it easier for users. You
can read about some of (fairly informal) coding style guidelines we try to use in Biopython in the contributing
documentation at http://biopython.org/wiki/Contributing. We also try to add code to the distribution
along with tests (see Chapter 21 for more info on the regression testing framework) and documentation, so
that everything can stay as workable and well documented as possible (including docstrings). This is, of
course, the most ideal situation, under many situations you’ll be able to find other people on the list who
will be willing to help add documentation or more tests for your code once you make it available. So, to end
this paragraph like the last, feel free to start working!

Please note that to make a code contribution you must have the legal right to contribute it and license it
under the Biopython license. If you wrote it all yourself, and it is not based on any other code, this shouldn’t
be a problem. However, there are issues if you want to contribute a derivative work - for example something
based on GPL or LPGL licenced code would not be compatible with our license. If you have any queries on
this, please discuss the issue on the mailing list or GitHub.

Another point of concern for any additions to Biopython regards any build time or run time depen-
dencies. Generally speaking, writing code to interact with a standalone tool (like BLAST, EMBOSS or
ClustalW) doesn’t present a big problem. However, any dependency on another library - even a Python
library (especially one needed in order to compile and install Biopython like NumPy) would need further
discussion.

Additionally, if you have code that you don’t think fits in the distribution, but that you want to make
available, we maintain Script Central (http://biopython.org/wiki/Scriptcentral) which has pointers
to freely available code in Python for bioinformatics.

Hopefully this documentation has got you excited enough about Biopython to try it out (and most
importantly, contribute!). Thanks for reading all the way through!
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Chapter 24

Appendix: Useful stuff about Python

If you haven’t spent a lot of time programming in Python, many questions and problems that come up in
using Biopython are often related to Python itself. This section tries to present some ideas and code that
come up often (at least for us!) while using the Biopython libraries. If you have any suggestions for useful
pointers that could go here, please contribute!

24.1 What the heck is a handle?

Handles are mentioned quite frequently throughout this documentation, and are also fairly confusing (at
least to me!). Basically, you can think of a handle as being a “wrapper” around text information.

Handles provide (at least) two benefits over plain text information:

1. They provide a standard way to deal with information stored in different ways. The text information
can be in a file, or in a string stored in memory, or the output from a command line program, or at
some remote website, but the handle provides a common way of dealing with information in all of these
formats.

2. They allow text information to be read incrementally, instead of all at once. This is really important
when you are dealing with huge text files which would use up all of your memory if you had to load
them all.

Handles can deal with text information that is being read (e. g. reading from a file) or written (e. g. writing
information to a file). In the case of a “read” handle, commonly used functions are read(), which reads the
entire text information from the handle, and readline(), which reads information one line at a time. For
“write” handles, the function write() is regularly used.

The most common usage for handles is reading information from a file, which is done using the built-in
Python function open. Here, we handle to the file m cold.fasta which you can download here (or find
included in the Biopython source code as Doc/examples/m cold.fasta).

>>> handle = open("m_cold.fasta", "r")

>>> handle.readline()

">gi|8332116|gb|BE037100.1|BE037100 MP14H09 MP Mesembryanthemum ...\n"

Handles are regularly used in Biopython for passing information to parsers. For example, since Biopython
1.54 the main functions in Bio.SeqIO and Bio.AlignIO have allowed you to use a filename instead of a
handle:

from Bio import SeqIO
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for record in SeqIO.parse("m_cold.fasta", "fasta"):

print(record.id, len(record))

On older versions of Biopython you had to use a handle, e.g.

from Bio import SeqIO

handle = open("m_cold.fasta", "r")

for record in SeqIO.parse(handle, "fasta"):

print(record.id, len(record))

handle.close()

This pattern is still useful - for example suppose you have a gzip compressed FASTA file you want to
parse:

import gzip

from Bio import SeqIO

handle = gzip.open("m_cold.fasta.gz", "rt")

for record in SeqIO.parse(handle, "fasta"):

print(record.id, len(record))

handle.close()

With our parsers for plain text files, under Python 3 it is essential to use gzip in text mode.
See Section 5.2 for more examples like this, including reading bzip2 compressed files.

24.1.1 Creating a handle from a string

One useful thing is to be able to turn information contained in a string into a handle. The following example
shows how to do this using cStringIO from the Python standard library:

>>> my_info = "A string\n with multiple lines."

>>> print(my_info)

A string

with multiple lines.

>>> from StringIO import StringIO

>>> my_info_handle = StringIO(my_info)

>>> first_line = my_info_handle.readline()

>>> print(first_line)

A string

<BLANKLINE>

>>> second_line = my_info_handle.readline()

>>> print(second_line)

with multiple lines.
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