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1 Background and Purpose

Logistic regression is a supervised learning approach that attempts to distinguish K classes from each other
using a weighted sum of some predictor variables xi. The logistic regression model is used to calculate the
weights βi of the predictor variables. In Biopython, the logistic regression model is currently implemented
for two classes only (K = 2); the number of predictor variables has no predefined limit.

As an example, let’s try to predict the operon structure in bacteria. An operon is a set of adjacent genes
on the same strand of DNA that are transcribed into a single mRNA molecule. Translation of the single
mRNA molecule then yields the individual proteins. For Bacillus subtilis, whose data we will be using, the
average number of genes in an operon is about 2.4.

As a first step in understanding gene regulation in bacteria, we need to know the operon structure. For
about 10% of the genes in Bacillus subtilis, the operon structure is known from experiments. A supervised
learning method can be used to predict the operon structure for the remaining 90% of the genes.

For such a supervised learning approach, we need to choose some predictor variables xi that can be
measured easily and are somehow related to the operon structure. One predictor variable might be the
distance in base pairs between genes. Adjacent genes belonging to the same operon tend to be separated by
a relatively short distance, whereas adjacent genes in different operons tend to have a larger space between
them to allow for promoter and terminator sequences. Another predictor variable is based on gene expression
measurements. By definition, genes belonging to the same operon have equal gene expression profiles, while
genes in different operons are expected to have different expression profiles. In practice, the measured
expression profiles of genes in the same operon are not quite identical due to the presence of measurement
errors. To assess the similarity in the gene expression profiles, we assume that the measurement errors follow
a normal distribution and calculate the corresponding log-likelihood score.

We now have two predictor variables that we can use to predict if two adjacent genes on the same strand
of DNA belong to the same operon:

• x1: the number of base pairs between them;

• x2: their similarity in expression profile.
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In a logistic regression model, we use a weighted sum of these two predictors to calculate a joint score S:

S = β0 + β1x1 + β2x2. (1)

The logistic regression model gives us appropriate values for the parameters β0, β1, β2 using two sets of
example genes:

• OP: Adjacent genes, on the same strand of DNA, known to belong to the same operon;

• NOP: Adjacent genes, on the same strand of DNA, known to belong to different operons.

In the logistic regression model, the probability of belonging to a class depends on the score via the
logistic function. For the two classes OP and NOP, we can write this as

Pr (OP|x1, x2) =
exp (β0 + β1x1 + β2x2)

1 + exp (β0 + β1x1 + β2x2)
(2)

Pr (NOP|x1, x2) =
1

1 + exp (β0 + β1x1 + β2x2)
(3)

Using a set of gene pairs for which it is known whether they belong to the same operon (class OP) or to
different operons (class NOP), we can calculate the weights β0, β1, β2 by maximizing the log-likelihood
corresponding to the probability functions (2) and (3).

2 Training the logistic regression model

Table 1: Adjacent gene pairs known to belong to the same operon (class OP) or to different operons (class
NOP). Intergene distances are negative if the two genes overlap.

Gene pair Intergene distance (x1) Gene expression score (x2) Class
cotJA — cotJB -53 -200.78 OP
yesK — yesL 117 -267.14 OP
lplA — lplB 57 -163.47 OP
lplB — lplC 16 -190.30 OP
lplC — lplD 11 -220.94 OP
lplD — yetF 85 -193.94 OP

yfmT — yfmS 16 -182.71 OP
yfmF — yfmE 15 -180.41 OP

citS — citT -26 -181.73 OP
citM — yflN 58 -259.87 OP
yfiI — yfiJ 126 -414.53 NOP

lipB — yfiQ 191 -249.57 NOP
yfiU — yfiV 113 -265.28 NOP
yfhH — yfhI 145 -312.99 NOP
cotY — cotX 154 -213.83 NOP
yjoB — rapA 147 -380.85 NOP
ptsI — splA 93 -291.13 NOP

Table 1 list some of the Bacillus subtilis gene pairs for which the operon structure is known. Let’s
calculate the logistic regression model from these data:

>>> from Bio import LogisticRegression
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>>> xs = [[-53, -200.78],
[117, -267.14],
[57, -163.47],
[16, -190.30],
[11, -220.94],
[85, -193.94],
[16, -182.71],
[15, -180.41],
[-26, -181.73],
[58, -259.87],
[126, -414.53],
[191, -249.57],
[113, -265.28],
[145, -312.99],
[154, -213.83],
[147, -380.85],
[93, -291.13]]

>>> ys = [1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
0,
0]

>>> model = LogisticRegression.train(xs, ys)

Here, xs and ys are the training data: xs contains the predictor variables for each gene pair, and ys
specifies if the gene pair belongs to the same operon (1, class OP) or different operons (0, class NOP). The
resulting logistic regression model is stored in model, which contains the weights β0, β1, and β2:

>>> model.beta
[8.9830290157144681, -0.035968960444850887, 0.02181395662983519]

Note that β1 is negative, as gene pairs with a shorter intergene distance have a higher probability of
belonging to the same operon (class OP). On the other hand, β2 is positive, as gene pairs belonging to the
same operon typically have a higher similarity score of their gene expression profiles. The parameter β0 is
positive due to the higher prevalence of operon gene pairs than non-operon gene pairs in the training data.

The function train has two optional arguments: update_fn and typecode. The update_fn can be used
to specify a callback function, taking as arguments the iteration number and the log-likelihood. With the
callback function, we can for example track the progress of the model calculation (which uses a Newton-
Raphson iteration to maximize the log-likelihood function of the logistic regression model):

>>> def show_progress(iteration, loglikelihood):
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print "Iteration:", iteration, "Log-likelihood function:", loglikelihood
>>>
>>> model = LogisticRegression.train(xs, ys, update_fn=show_progress)
Iteration: 0 Log-likelihood function: -11.7835020695
Iteration: 1 Log-likelihood function: -7.15886767672
Iteration: 2 Log-likelihood function: -5.76877209868
Iteration: 3 Log-likelihood function: -5.11362294338
Iteration: 4 Log-likelihood function: -4.74870642433
Iteration: 5 Log-likelihood function: -4.50026077146
Iteration: 6 Log-likelihood function: -4.31127773737
Iteration: 7 Log-likelihood function: -4.16015043396
Iteration: 8 Log-likelihood function: -4.03561719785
Iteration: 9 Log-likelihood function: -3.93073282192
Iteration: 10 Log-likelihood function: -3.84087660929
Iteration: 11 Log-likelihood function: -3.76282560605
Iteration: 12 Log-likelihood function: -3.69425027154
Iteration: 13 Log-likelihood function: -3.6334178602
Iteration: 14 Log-likelihood function: -3.57900855837
Iteration: 15 Log-likelihood function: -3.52999671386
Iteration: 16 Log-likelihood function: -3.48557145163
Iteration: 17 Log-likelihood function: -3.44508206139
Iteration: 18 Log-likelihood function: -3.40799948447
Iteration: 19 Log-likelihood function: -3.3738885624
Iteration: 20 Log-likelihood function: -3.3423876581
Iteration: 21 Log-likelihood function: -3.31319343769
Iteration: 22 Log-likelihood function: -3.2860493346
Iteration: 23 Log-likelihood function: -3.2607366863
Iteration: 24 Log-likelihood function: -3.23706784091
Iteration: 25 Log-likelihood function: -3.21488073614
Iteration: 26 Log-likelihood function: -3.19403459259
Iteration: 27 Log-likelihood function: -3.17440646052
Iteration: 28 Log-likelihood function: -3.15588842703
Iteration: 29 Log-likelihood function: -3.13838533947
Iteration: 30 Log-likelihood function: -3.12181293595
Iteration: 31 Log-likelihood function: -3.10609629966
Iteration: 32 Log-likelihood function: -3.09116857282
Iteration: 33 Log-likelihood function: -3.07696988017
Iteration: 34 Log-likelihood function: -3.06344642288
Iteration: 35 Log-likelihood function: -3.05054971191
Iteration: 36 Log-likelihood function: -3.03823591619
Iteration: 37 Log-likelihood function: -3.02646530573
Iteration: 38 Log-likelihood function: -3.01520177394
Iteration: 39 Log-likelihood function: -3.00441242601
Iteration: 40 Log-likelihood function: -2.99406722296
Iteration: 41 Log-likelihood function: -2.98413867259

The iteration stops once the increase in the log-likelihood function is less than 0.01. If no convergence is
reached after 500 iterations, the train function returns with an AssertionError.

The optional keyword typecode can almost always be ignored. This keyword allows the user to choose
the type of Numeric matrix to use. In particular, to avoid memory problems for very large problems, it
may be necessary to use single-precision floats (Float8, Float16, etc.) rather than double, which is used by
default.
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3 Using the logistic regression model for classification

Classification is performed by calling the classify function. Given a logistic regression model and the
values for x1 and x2 (e.g. for a gene pair of unknown operon structure), the classify function returns 1 or
0, corresponding to class OP and class NOP, respectively. For example, let’s consider the gene pairs yxcE,
yxcD and yxiB, yxiA:

Table 2: Adjacent gene pairs of unknown operon status.
Gene pair Intergene distance x1 Gene expression score x2

yxcE — yxcD 6 -173.143442352
yxiB — yxiA 309 -271.005880394

The logistic regression model classifies yxcE, yxcD as belonging to the same operon (class OP), while
yxiB, yxiA are predicted to belong to different operons:

>>> print "yxcE, yxcD:", LogisticRegression.classify(model, [6,-173.143442352])
yxcE, yxcD: 1
>>> print "yxiB, yxiA:", LogisticRegression.classify(model, [309, -271.005880394])
yxiB, yxiA: 0

(which, by the way, agrees with the biological literature).
To find out how confident we can be in these predictions, we can call the calculate function to obtain

the probabilities (equations (2) and 3) for class OP and NOP. For yxcE, yxcD we find

>>> q, p = LogisticRegression.calculate(model, [6,-173.143442352])
>>> print "class OP: probability =", p, "class NOP: probability =", q
class OP: probability = 0.993242163503 class NOP: probability = 0.00675783649744

and for yxiB, yxiA

>>> q, p = LogisticRegression.calculate(model, [309, -271.005880394])
>>> print "class OP: probability =", p, "class NOP: probability =", q
class OP: probability = 0.000321211251817 class NOP: probability = 0.999678788748

To get some idea of the prediction accuracy of the logistic regression model, we can apply it to the
training data:

>>> for i in range(len(ys)):
print "True:", ys[i], "Predicted:", LogisticRegression.classify(model, xs[i])

True: 1 Predicted: 1
True: 1 Predicted: 0
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 0 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 0
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True: 0 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 0

showing that the prediction is correct for all but one of the gene pairs. A more reliable estimate of the
prediction accuracy can be found from a leave-one-out analysis, in which the model is recalculated from the
training data after removing the gene to be predicted:

>>> for i in range(len(ys)):
model = LogisticRegression.train(xs[:i]+xs[i+1:], ys[:i]+ys[i+1:])
print "True:", ys[i], "Predicted:", LogisticRegression.classify(model, xs[i])

True: 1 Predicted: 1
True: 1 Predicted: 0
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 0 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 1
True: 0 Predicted: 0
True: 0 Predicted: 0

The leave-one-out analysis shows the the prediction of the logistic regression model is incorrect for only two
of the gene pairs, which corresponds to a prediction accuracy of 88%.

4 Logistic Regression, Linear Discriminant Analysis, and Support
Vector Machines

The logistic regression model is similar to linear discriminant analysis. In linear discriminant analysis, the
class probabilities also follow equations (2) and (3). However, instead of estimating the coefficients β directly,
we first fit a normal distribution to the predictor variables x. The coefficients β are then calculated from the
means and covariances of the normal distribution. If the distribution of x is indeed normal, then we expect
linear discriminant analysis to perform better than the logistic regression model. The logistic regression
model, on the other hand, is more robust to deviations from normality.

Another similar approach is a support vector machine with a linear kernel. Such an SVM also uses a
linear combination of the predictors, but estimates the coefficients β from the predictor variables x near
the boundary region between the classes. If the logistic regression model (equations (2) and (3)) is a good
description for x away from the boundary region, we expect the logistic regression model to perform better
than an SVM with a linear kernel, as it relies on more data. If not, an SVM with a linear kernel may perform
better.

5 Literature
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