Writing Tests for Biopython modules

Brad Chapman (chapmanb@uga.edu)
October 28, 2005

Contents

1 Purpose and Justifications 1
2 Understanding the Biopython test system 1
3 Writing the Tests 1
4 Getting the test integrated in the testing framework 3

1 Purpose and Justifications

So you want to write a Test for a Biopython module? Great! Providing comprehensive tests for modules
is one of the most important parts of keeping code up to date and working the way you expect it to. It
also tends to be one of the most undervalued aspects of contributing, so this document is designed to make
writing good test code as easy as possible.

We start off with the simple assumption that there is a module you wrote (or which doesn’t already have
tests), and you want to test it out. We'll call it MyModule, for lack of a better name, from now on.

2 Understanding the Biopython test system

Biopython tests are found in biopython/Tests and each test will have two important files and directories
involved with it:

1. test_MyModule.py — The actual test code for your module.

2. MyModule — A directory where any necessary input files will be located. Any output files that will be
generated should also be written here (and preferrably cleaned up after the tests are done) to prevent
clogging up the main Tests directory.

The main engine that runs all the tests is run_tests.py. If you name your file with a test_ prefix and
put it in the Tests directory, run_tests.py will find it and run it.

3 Writing the Tests

Okay, now that we’re oriented with the important parts of the test framework, we’ll get down to writing
tests. We will use the unittest framework, included with Python since version 2.1, and documented in the
python Library Reference (which I know you are keeping under your pillow, as recommended).

To get started, here’s a framework to copy and paste:



import os
import sys
import unittest

def run_tests(argv):
test_suite = testing_suite()
runner = unittest.TextTestRunner(sys.stdout, verbosity = 2)
runner.run(test_suite)

def testing_suite():
"""Generate the suite of tests.

test_suite = unittest.TestSuite()

test_loader = unittest.TestLoader()
test_loader.testMethodPrefix = ’t_’
tests = [MyModuleTestOne]

for test in tests:
cur_suite = test_loader.loadTestsFromTestCase(test)
test_suite.addTest (cur_suite)

return test_suite

class MyModuleTestOne(unittest.TestCase):
def setUp(self):
pass

def tearDown(self):
pass
if __name__ == "__main__":
sys.exit(run_tests(sys.argv))

The two functions run_tests and testing_suite just do all of the unittest setup — so you don’t really
need to understand everything about the framework to write the tests. All you’ll need to do is write classes,
like MyModuleTestOne, and add them to the lists of test classes in the testing_suite function and you’ll
be set.

Here’s an example of a Test class, which will lead into a description of the different parts which go into
making one:

class MyModuleTestOne(unittest.TestCase):
def setUp(self):
self .handle = open("MyModule/input_file.txt")
self.output_file = "MyModule/output.txt"

def tearDown(self):
self .handle.close()
if os.path.exists(self.output_file):
os.remove (self.output_file)

def t_simple_parsing(self):



"""Test to be sure that MyModule can parse input files.
nnn

parser = MyModule.RecordParser ()

rec = parser.parse(self.handle)

assert rec.id = "TheExpectedID"

def t_output(self):
"""Ensure that we can write proper output files.
nnn
parser = MyModule.RecordParser ()
rec = parser.parse(self.handle)
output_handle = open(self.output_file, "w")
rec.write_to_file(output_handle)
output_handle.close()

We'll cover the important parts of this class one at a time:

e It should derive from unittest.TestCase and should cover one basic aspect of your code (parsing into
Record objects, parsing into Sequence objects. .. )

e setUp — code that you want to run before running each test in the class. This might set up expected
files or open files — it just prevents having to rewrite the same code over and over in each test.

e tearDown — code to clean up after your test is done. This will close up handles you were using and
clean up produced files that you don’t need any longer.

e The tests are prefixed with t_ and each test should cover one specific part of what you are trying to
test. You can have as many tests as you want in a class.

e The documentation strings of the tests are used when running them — so write something useful that
will provide help if a test is failing.

e You should test expected parts of your output using standard python assertions. This makes explicit
the things you think are important enough to remain the same over multiple runs of the tests and
revisions of the code base.

When you are done, the tests should run happily by doing python test_MyModule.py and you should
expect output like:

Test to be sure that MyModule can parse input files. ... ok
Ensure that we can write proper output files. ... ok

Ran 2 tests in 0.225s

You should continue like this until you feel you’ve suitable tested the parts of the code so that someone
running this test later on can tell if they’ve broken anything essential. You have to draw a line between testing
everything in the world, and getting tests written in a reasonable amount of time. Tests are important, but
you’d much rather be writing code, right? So get them done and you’ll be happy.

4 Getting the test integrated in the testing framework

Well, you've written all your tests and they all pass and your are feeling very happy. There is just one last
step to get things integrated with Biopython. Every time someone runs python run_tests.py each test is



executed, and then checked against the expected output (all ’ok’s) to make sure nothing has broken. Well,
you need to make sure the tests knows what the expected output is.
To do this takes just a second:

python run_tests.py -g test_MyModule.py

This will run your test, and write the output to output/test_MyModule. You should go in and check
this file to make sure everything is as expected. Then, you’re all set.

So, now you should be able to run all of the Biopython tests, see your test show up, and get a happy ok
from the testing framework.

Good job — now you either need to check your tests in if you have CVS access, or just send your
test_MyModule.py and contents of MyModule to someone with CVS priviledges.

Thanks for the tests.



	Purpose and Justifications
	Understanding the Biopython test system
	Writing the Tests
	Getting the test integrated in the testing framework

