
Converting GenBank (or other formats) to Fasta

Brad Chapman (chapmanb@uga.edu)

October 28, 2005

Contents

1 Background and Purpose 1

2 Quick conversion using the FormatIO system 1

3 Specialized conversion using Fasta Record objects 3

4 Beyond GenBank to Fasta 3

1 Background and Purpose

One of the most common file formats used in biology is Fasta format, thus converting into this format for
storage of sequences or preparation for input into a program is very common. Fasta format has become so
popular because it is very simple. It consists of two parts, a title line which begins with a > character, and
then a number of sequence lines. Here’s an example Fasta sequence:

>gi|3318709|pdb|1A91| Subunit C Of The F1fo Atp Synthase Of Escherichia Coli
MENLNMDLLYMAAAVMMGLAAIGAAIGIGILGGKFLEGAARQPDLIPLLRTQFFIVMGLVDAIPMIAVGL
GLYVMFAVA

This document will discuss ways in Biopython to convert a file of GenBank records into a file of Fasta
sequences. Although Fasta format is simple, it can also be difficult to deal with because there are no
standards for how information about a sequence will be presented on the title line. Because of this we’ll
discuss two ways to do conversions:

• A quick and easy way which assumes that you don’t need specialized control over the way output is
produced on the title line.

• A more controlled way which allows you to construct title lines to your specifications.

These examples assume some basic familiarity with constructing Biopython Parsers and Iterators, and
some understanding of the SeqRecord object in Biopython.

2 Quick conversion using the FormatIO system

If you only want a quick and easy to type way to convert GenBank to Fasta format with reasonable title
names, Biopython has an in-development format conversion mechanism. If you’ve used BioPerl, this mech-
anism is similar to that used in their SeqIO system. Basically, it involves converting GenBank records into
standard Biopython SeqRecord objects, and then converting these SeqRecord objects back into a Fasta

1

record in a file. As we mentioned, this mechanism is easy, so all of this work is done internally within
Biopython code.

Now that we understand how things will be working internally, let’s write the code that drives the
conversion process. First, we open up a handle to read from the GenBank file, and a handle to write to
the output Fasta file. Assuming you’ve somehow defined input_file, which is an existing file of GenBank
records, and output_file, the name of the output file, this is just standard python:

input_handle = open(input_file)
output_handle = open(output_file, "w")

Now, we create a Biopython FormatIO object which will, using SeqRecord objects, be converting between
GenBank format and Fasta format. First, we get the Biopython registry of formats:

from Bio import formats

The imported formats object contains a dictionary-like interface to biological file formats able to be dealt
with through the FormatIO system. A simple print formats gives you a list of all the available formats:

formats, exporting ’blast’, ’blastn’, ’blastp’, ’blastx’, ’embl’, ’embl/65’,
’empty’, ’fasta’, ’genbank’, ’genbank-records’, ’genbank-release’,
’ncbi-blastn’, ’ncbi-blastp’, ’ncbi-blastx’, ’ncbi-tblastn’, ’ncbi-tblastx’,
’search’, ’sequence’, ’swissprot’, ’swissprot/38’, ’swissprot/40’,
’tblastn’, ’tblastx’, ’wu-blastn’, ’wu-blastp’, ’wu-blastx’

The important thing to note is that we’ve got our genbank and fasta formats we want to deal with.
With these formats, we can create a formatter with one line of code:

formatter = FormatIO("SeqRecord", formats["genbank"], formats["fasta"])

With the formatter in hand, the actual conversion is also a very simple single line of code, using our
input and output handles defined above:

formatter.convert(input_handle, output_handle)

That’s it – we’ve done the conversion. Assuming we have a GenBank file beginning like:

LOCUS ATCOR66M 513 bp mRNA PLN 02-MAR-1992
DEFINITION A.thaliana cor6.6 mRNA.
ACCESSION X55053
VERSION X55053.1 GI:16229

This will output Fasta that looks like:

>X55053.1 A.thaliana cor6.6 mRNA.
aacaaaacacacatcaaaaacgattttacaagaaaaaaatatctgaaaaatgtcagagaccaacaagaatgc

Thus, the id (accession number with versioning) and description are maintained in the final Fasta title.

2

3 Specialized conversion using Fasta Record objects

If the generally useful scheme described above for retaining sequence information in the Fasta title does
not work for your purposes, it is always possible to hand create your own system for conversion between
GenBank information and Fasta titles.

This involves using the standard Fasta Record object. The important thing about this object, for our
purposes, is that if you have a Fasta record object and get the string representation of it (by printing or
calling str on the object) it will output nicely formatted Fasta. Thus, we need to only set the title and
sequence attributes of the Fasta record, and we can write out nice Fasta.

Now that the preliminaries are out of the way, we’ll get down to doing the work. First, we create a
GenBank Iterator which will read over the input file and return GenBank Record objects:

from Bio import GenBank

iterator = GenBank.Iterator(input_handle, GenBank.RecordParser())

Now, using the information we learned above about Fasta Records, we can write out a Fasta file with
complete control over how the tile looks. In this example case, we’ll just store information about the GI
number, LOCUS name, version, and description in the title line. We then loop over the GenBank records
and write out the Fasta Records one at a time:

from Bio import Fasta

for gb_rec in iterator:
fasta_rec = Fasta.Record()
fasta_rec.title = "%s|%s|%s %s" % \
(gb_rec.gi, gb_rec.locus, gb_rec.version, gb_rec.definition)
fasta_rec.sequence = gb_rec.sequence
output_handle.write(str(fasta_rec) + "\n")

This will produce an output file that, given the GenBank we showed above, looks like:

>16229|ATCOR66M|X55053.1 A.thaliana cor6.6 mRNA.
AACAAAACACACATCAAAAACGATTTTACAAGAAAAAAATATCTGAAAAATGTCAGAGAC

To adjust what is written on the title line, all we need to change from the code above is the line specifying
what makes up fasta_rec.title.

4 Beyond GenBank to Fasta

Although this example describes converting GenBank to Fasta, other conversions are possible using the same
frameworks.

For the FormatIO system, conversions from Swissprot or EMBL format to Fasta should work just as
easily by replacing the formats["genbank"] dictionary call above with swissprot or embl. Currently, the
FormatIO system is still under development and writing other formats besides Fasta is not yet supported.
Other output formats will hopefully be added in the future.

For the Fasta Record system, any input format can be used that is supported by parsing in Biopython.
For output, the GenBank Record class also supports string output in GenBank flat file format.

3

	Background and Purpose
	Quick conversion using the FormatIO system
	Specialized conversion using Fasta Record objects
	Beyond GenBank to Fasta

